A Desktop Networked Haptic VR Interface for Mechanical Assembly

Author(s):  
Abhishek Seth ◽  
Hai-Jun Su ◽  
Judy M. Vance

This paper presents the development of a PC-based 3D human computer interface for virtual assembly applications. This system is capable of importing complex CAD (Computer Aided Design) models, rendering them in stereo, and implementing haptic force feedback for realistic part interaction in virtual environments. Such an application will facilitate wider acceptance of the use of a VR interface for prototyping assembly tasks. This interface provides both visual and haptic feedback to the user, while allowing assembly tasks to be performed on a desktop virtual environment. The network module has the ability to communicate with multiple VR systems (such as CAVE etc.) at geographically dispersed locations using a non-dedicated network channel. The potential benefits of such a system include identification of assembly issues early in the design process where changes can be made easily, resulting in a more efficient and less costly product design process.

Author(s):  
Abhishek Seth ◽  
Hai-Jun Su ◽  
Judy M. Vance

Virtual Reality (VR) technology holds promise as a virtual prototyping tool for mechanical assembly; however, several developmental challenges still need to be addressed before virtual prototyping applications can successfully be integrated into the product realization process. This paper describes the development of SHARP (System for Haptic Assembly & Realistic Prototyping), a portable VR interface for virtual assembly. SHARP uses physically-based modeling for simulating realistic part-to-part and hand-to-part interactions in virtual environments. A dual handed haptic interface for realistic part interaction using the PHANToM® haptic devices is presented. The capability of creating subassemblies enhances the application’s ability to handle a wide variety of assembly scenarios. Swept volumes are implemented for addressing maintainability issues and a network module is added for communicating with different VR systems at dispersed geographic locations. Support for various types of VR systems allows an easy integration of SHARP into the product realization process resulting in faster product development, faster identification of assembly and design issues and a more efficient and less costly product design process.


2010 ◽  
Vol 19 (5) ◽  
pp. 415-429 ◽  
Author(s):  
Marwan Radi ◽  
Verena Nitsch

In contrast to automated production, human intelligence is deemed necessary for successful execution of assembly tasks that are difficult or expensive to automate in small and medium lots. However, human ability is hindered in some cases by physical barriers such as miniaturization or in contrast, very heavy components. Telepresence technology can be considered a solution for performing a wide variety of assembly tasks where human intelligence and haptic sense are needed. This work highlights several issues involved in deploying industrial telepresence systems to manipulate and assemble microparts as well as heavy objects. Two sets of experiments are conducted to investigate telepresence related aspects in an industrial setting. The first experiment evaluates the usefulness of haptic feedback for a human operator in a standard pick-and-place task. Three operation modes were considered: visual feedback, force feedback, and force assistance (realized as vibration). In the second experiment, two different guidance strategies for the teleoperator were tested. The comparison between a position and a velocity scheme in terms of task completion time and subjective preferences is presented.


2013 ◽  
Vol 7 (1) ◽  
pp. 116-120 ◽  
Author(s):  
Li Busheng ◽  
Hu Jingfang

The paper has analyzed and digested the related literatures from home and aboard, summarized techniques and theoretical methods of the relevant prototype systems. Based on the understanding of the present situation of the domestic and foreign sketches technology application basis, through the existing ceramics product design process and production process flow of the detailed ceramic products of design process are in-depth analysis and decomposition is proposed based on the sketch of the computer aided design ceramic technology, and on the basis of the development of the corresponding ceramic design software.


2013 ◽  
Vol 694-697 ◽  
pp. 2278-2281
Author(s):  
Bu Sheng Li ◽  
Jing Fang Hu

Based on the understanding of the present situation of the domestic and foreign sketches technology application basis, through the existing ceramics product design process and production process flow of the detailed ceramic products of design process are in-depth analysis and decomposition is proposed based on the sketch of the computer aided design ceramic technology, and on the basis of the development of the corresponding ceramic design software.


2017 ◽  
Vol 25 (3) ◽  
pp. 212-228 ◽  
Author(s):  
Damien Fleche ◽  
Jean-Bernard Bluntzer ◽  
Ahmad Al Khatib ◽  
Morad Mahdjoub ◽  
Jean-Claude Sagot

Today, product design process is facing a market globalisation led by distributed teams. The international market context, in which industrial companies evolve, leads design teams to work in a large multidisciplinary collaborative context using collaborative practices. In this context, product design process is driven by the integration and optimisation of stakeholders’ collaboration. Thus, to facilitate collaborative steps, new management strategies are defined and new information systems can be used. To this end, we have focused our article on the topic of collaborative product design project management. We have underlined the necessity to use quantitative and non-intrusive indicators during the management of collaborative design phases besides subjective evaluations. Tracking these indicators is performed in parallel to the existing approaches in order to evaluate the performance of collaborative design project. Moreover, these indicators can show the impact of the collaboration steps on the design project evolution. The computation of proposed indicators is based on precise metrics which details the completeness of the computer-aided design model and its evolution depending on the used collaborative tools and the project milestones. This computation uses the importance of each computer-aided design model part and the transformation rate of each part of the computer-aided design model.


Author(s):  
Abhishek Seth ◽  
Hai-Jun Su ◽  
Judy M. Vance

Virtual reality (VR) technology holds promise as a virtual prototyping (VP) tool for mechanical assembly; however, several developmental challenges still need to be addressed before VP applications can successfully be integrated into the product realization process. This paper describes the development of System for Haptic Assembly and Realistic Prototyping (SHARP), a portable virtual assembly system. SHARP uses physics-based modeling for simulating realistic part-to-part and hand-to-part interactions in virtual environments. A dual-handed haptic interface for a realistic part interaction using the PHANToM® haptic devices is presented. The capability of creating subassemblies enhances the application’s ability to handle a wide variety of assembly scenarios at the part level as well as at the subassembly level. Swept volumes are implemented for addressing maintainability issues, and a network module is added for communicating with different VR systems at dispersed geographic locations. Support for various types of VR systems allows an easy integration of SHARP into the product realization process, resulting in faster product development, faster identification of assembly and design issues, and a more efficient and less costly product design process.


1977 ◽  
Vol 99 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Daniel E. Whitney

The automation of mechanical assembly requires analysis of both force and position information in order to monitor, guide, and guarantee the success of assembly tasks. This information may be obtained by force and position sensors on the assembly device, and used to make small corrections in the paths of parts while they are in contact and coming together. Two issues are involved: what path corrections to make, and how to make them in a stable dynamic fashion, given that such motions will alter the subsequent information. This paper presents a formal representation of vector force feedback strategies and shows that they must be expressed as control problems. Stability bounds are derived based on simple linear actuator models and sampled data control. These bounds are verified using computer simulation and laboratory test apparatus.


Author(s):  
E. Pere ◽  
N. Langrana ◽  
D. Gomez ◽  
G. Burdea

Abstract This paper describes a virtual reality system in which the user can perform assembly tasks in a simulated workshop. This PC-based VR system integrates a force feedback device, the Rutgers Master II. It allows the user to feel the interaction with virtual tools and makes the training task in a synthetic environment closer to reality. The application also allows object manipulation with mechanical behavior, navigation, collision detection and other features.


Author(s):  
Enrique Gallegos-Nieto ◽  
Hugo I. Medellín-Castillo ◽  
Germánico González-Badillo ◽  
Theodore Lim

Traditional computer aided design (CAD) and computer aided assembly planning (CAAP) systems are still limited because they do not consider human experience and knowledge capture to support intuitively the assembly planning. Moreover, some aspects such as quality testing, shop floor layout, human ergonomics and physical constraints are not considered during the assembly evaluation. Virtual reality (VR) systems can be used to simulate, analyze and optimize manufacturing processes including assembly. The use of (VR) and haptic systems can improve the efficiency of assembly process planning, evaluation and training. This paper describes an experiment conducted to investigate the benefits of a haptic aided virtual reality system for assembly training of real assembly tasks. Three groups of individuals with different level of training were considered in the evaluation. The first group received training by the virtual reality system including haptic feedback. The second group also received the same virtual training but without haptic feedback. The third group received no training in the virtual environment. Upon completion of the training, the assembly performance of the three different groups was evaluated by the construction of a real assembly task. The results have shown a significant improvement in the assembly performance of individuals who undertook a virtual training with force feedback, compared with those who did not take training.


Author(s):  
Volodymyr Karedin ◽  
Nadiya Pavlenko

CREDO RADON UA software provides an automated calculation of the strength of the pavement structures of non-rigid and rigid types, as well as the calculation of the strengthening of existing structures. In the article, one can see the main features and functionality of the CREDO RADON UA software, the main points in the calculations according to the new regulations. Information support of the design process includes necessary databases, informational and helping materials that make up the full support of the pavement design process. The concept of CREDO RADON UA 1.0 software is made on the use of elasticity theory methods in calculations of initial information models of pavements. Performing optimization calculations, the roadwear in CREDO RADON UA is designed in such a way that no unacceptable residual deformation occurs under the influence of short-term dynamic or static loading in the working layer of the earth bed and in the structural layers during the lifetime of the structure. The calculation algorithms were made in accordance with the current regulatory documents of Ukraine. CREDO RADON UA software allows user to create information bases on road construction materials and vehicles as part of the traffic flow for calculations. The presented system of automated modeling makes it easier for the customer to control the quality of design solutions, to reasonably assign designs to layers of reinforcement, to quickly make comparisons of calculations of different designs for the optimal use of allocated funds. Prospects for further improvement of the program should be the results of theoretical and experimental studies on filling the databases, which are used as information support for automated design of road structures. Keywords: CREDO RADON UA, road, computer-aided design, repair project, road pavement, strengthening, construction, rigid pavement, elasticity module, a transport stream, calculation method, information support, dynamic or static loading.


Sign in / Sign up

Export Citation Format

Share Document