FRTCOILS: A General Purpose Simulation Software for Design and Prediction of Thermal and Hydraulic Performance of Finned-Tube Compact Heat Exchangers

Author(s):  
Maung Naing Naing Tun ◽  
Nilufer Egrican

This paper presents computer software developed for rating and optimum selection of finned circular tubes compact heat exchangers with various coil geometries. The software is developed to use as a computing tool for commercial and R&D purposes in FRITERM A.S, an original equipment manufacturer (OEM) of finned tube heat exchangers. Finned-tube heat exchangers are highly utilized in refrigeration and process industries and heat transfer and pressure drop calculations are very important to manufactures and design engineers. For this purpose, a simulation and design software to predict the performance of finned-tube heat exchangers is presented. In finned-tube coils fin side fluid is air and tube side fluid can be water, oil, glycol water solution mixture and refrigerants. The analysis and rating of coils at dry and wet operating conditions are presented. Design and the most suitable selections of coils at the given parameters and design constraints from many different coil geometries are also performed in the software. User-friendly object-oriented programming C# is applied in developing the software. The software is developed in modular basic. Six modules are developed: Heating Coils, Cooling Coils, Condenser Coils, Steam Coils, Heat Recovery Coils and Evaporator (DX) Coils. REFPROP is also integrated in the software and all fluids’ thermal and transport properties are obtained from REFPROP. Heat transfer and pressure drop correlations available from literature are evaluated with recommendations. Simulated results are verified against experimental results.

Author(s):  
Josua P. Meyer ◽  
Leon Liebenberg ◽  
Jonathan A. Olivier

Heat exchangers are usually designed in such a way that they do not operate in the transition region. This is usually due to a lack of information in this region. However, due to design constraints, energy efficiency requirements or change of operating conditions, heat exchangers are often forced to operate in this region. It is also well known that entrance disturbances influence where transition occurs. The purpose of this paper is to present experimental heat transfer and pressure drop data in the transition region for fully developed and developing flows inside smooth tubes using water as the working fluid. The use of different inlet disturbances were used to investigate its effect on transition. A tube-in-tube heat exchanger was used to perform the experiments, which ranged in Reynolds numbers from 1 000 to 20 000, with Prandtl numbers being between 4 and 6 while Grashof numbers were in the order of 105. Results showed that the type of inlet disturbance could delay transition to a Reynolds number as high as 7 000, while other inlets expedited it, confirming results of others. For heat transfer, though, it was found that transition was independent of the inlet disturbance and all commenced at the same Reynolds number, 2 000–3 000, which was attributed to secondary flow effects.


2012 ◽  
Vol 55 (11-12) ◽  
pp. 2835-2843 ◽  
Author(s):  
Bruno F. Pussoli ◽  
Jader R. Barbosa ◽  
Luciana W. da Silva ◽  
Massoud Kaviany

Author(s):  
Amir Jokar ◽  
Mohammad H. Hosni ◽  
Steven J. Eckels

Experimental study of the single-phase heat transfer and fluid flow in mesochannels, i.e., between microchannels and minichannels, has received continued interest by researchers in recent years. The studies have resulted in empirical correlations for various geometries ranging from simple circular pipes to complicated enhanced non-circular channels. In spite of these extensive studies, it is still unclear whether the theories and correlations developed for conventional macrochannels are directly applicable for use in microchannels (Dh = 10–200 μm) and minichannels (Dh = 200 μm–3 mm) with heat exchanger applications. A few researchers have agreed that similar results maybe obtained for the laminar flow regime regardless of the channel size; however, no general agreement has been reached for the transitional and turbulent flow regimes yet. In this study, different mesochannel air-liquid compact heat exchangers were evaluated and the experimental results were compared with published empirical correlations. These compact heat exchangers were used in the secondary fluid loops of an automotive air conditioning system that used refrigerant R134a as the working fluid. A modified Wilson plot technique was applied to obtain the heat transfer coefficients, and the Fanning equation was used to calculate the pressure drop friction factors. The uncertainty estimates for the measured and calculated parameters were calculated. The results of this study showed that the well established heat transfer and pressure drop correlations for the macrochannels are not directly applicable for use in the compact heat exchangers with mesochannels.


Author(s):  
Piyush Sabharwall ◽  
Mike Patterson ◽  
Vivek Utgikar ◽  
Fred Gunnerson

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor-process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rationale for considering liquid metals as the working fluid is because of the higher convective heat transfer coefficient. This explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet of NGNP and inlet of the process heat facility. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a tradeoff between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change is presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.


1992 ◽  
Vol 114 (2) ◽  
pp. 373-382 ◽  
Author(s):  
D. A. Olson

We have measured heat transfer and pressure drop of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/cm2. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document