Entropy Generation Analysis of Microchannel Heat

Author(s):  
Jaehoon Jung ◽  
Sung Jin Kim

Analytical solutions for entropy generation rate distribution associated with heat transfer and fluid friction in microchannel heat sinks are examined. Microchannel heat sinks are modeled as a porous medium through which fluid flows. Analytical solutions are obtained by using velocity and temperature distributions of microchannel heat sinks, which are based on the modified Darcy model for fluid flow and the two-equation model for heat transfer. Using the analytical solution, the entropy generation of heat sinks was obtained. The effects of height, channel width, and fin thickness on the entropy generation rate were studied and thermal optimization of heat sink was performed.

2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Mohammad Shanbghazani ◽  
Vahid Heidarpoor ◽  
Marc A. Rosen ◽  
Iraj Mirzaee

The entropy generation is investigated numerically in axisymmetric, steady-state, and incompressible laminar flow in a rotating single free disk. The finite-volume method is used for solving the momentum and energy equations needed for the determination of the entropy generation due to heat transfer and fluid friction. The numerical model is validated by comparing it to previously reported analytical and experimental data for momentum and energy. Results are presented in terms of velocity distribution, temperature, local entropy generation rate, Bejan number, and irreversibility ratio distribution for various rotational Reynolds number and physical cases, using dimensionless parameters. It is demonstrated that increasing rotational Reynolds number increases the local entropy generation rate and irreversibility rate, and that the irreversibility is mainly due to heat transfer while the irreversibility associated with fluid friction is minor.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rajkumar Sarma ◽  
Pranab Kumar Mondal

We focus on the entropy generation minimization for the flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of applied pressure gradient, interfacial slip, and conjugate heat transfer. We use the simplified Phan–Thien–Tanner model (s-PTT) to represent the rheological behavior of the viscoelastic fluid. Using thermal boundary conditions of the third kind, we solve the transport equations analytically to obtain the velocity and temperature distributions in the flow field, which are further used to calculate the entropy generation rate in the analysis. In this study, the influential role of the following dimensionless parameters on entropy generation rate is examined: the viscoelastic parameter (εDe2), slip coefficient (k¯), channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi) and Peclet number (Pe). We show that there exists a particular value of the abovementioned parameters that lead to a minimum entropy generation rate in the system. We believe the results of this analysis could be of helpful in the optimum design of microfluidic system/devices typically used in thermal management, such as micro-electronic devices, microreactors, and microheat exchangers.


2019 ◽  
Vol 29 (8) ◽  
pp. 2566-2587 ◽  
Author(s):  
Hang Xu ◽  
Huang Huang ◽  
Xiao-Hang Xu ◽  
Qiang Sun

PurposeThis paper aims to study the heat transfer of nanofluid flow driven by the move of channel walls in a microchannel under the effects of the electrical double layer and slippery properties of channel walls. The distributions of velocity, temperature and nanoparticle volumetric concentration are analyzed under different slip-length. Also, the variation rates of flow velocity, temperature, concentration of nanoparticle, the pressure constant, the local volumetric entropy generation rate and the total cross-sectional entropy generation are analyzed.Design/methodology/approachA recently developed model is chosen which is robust and reasonable from the point of view of physics, as it does not impose nonphysical boundary conditions, for instance, the zero electrical potential in the middle plane of the channel or the artificial pressure constant. The governing equations of flow motion, energy, electrical double layer and stream potential are derived with slip boundary condition presented. The model is non-dimensionalized and solved by using the homotopy analysis method.FindingsSlip-length has significant influences on the velocity, temperature and nanoparticle volumetric concentration of the nanofluid. It also has strong effects on the pressure constant. With the increase of the slip-length, the pressure constant of the nanofluid in the horizontal microchannel decreases. Both the local volumetric entropy generation rate and total cross-sectional entropy generation rate are significantly affected by both the slip-length of the lower wall and the thermal diffusion. The local volumetric entropy generation rate at the upper wall is always higher than that around the lower wall. Also, the larger the slip-length is, the lower the total cross-sectional entropy generation rate is when the thermal diffusion is moderate.Originality/valueThe findings in this work on the heat transfer and flow phenomena of the nanofluid in microchannel are expected to make a contribution to guide the design of micro-electro-mechanical systems.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
W. A. Khan ◽  
J. R. Culham ◽  
M. M. Yovanovich

An entropy generation minimization method is applied to study the thermodynamic losses caused by heat transfer and pressure drop for the fluid in a cylindrical pin-fin heat sink and bypass flow regions. A general expression for the entropy generation rate is obtained by considering control volumes around the heat sink and bypass regions. The conservation equations for mass and energy with the entropy balance are applied in both regions. Inside the heat sink, analytical/empirical correlations are used for heat transfer coefficients and friction factors, where the reference velocity used in the Reynolds number and the pressure drop is based on the minimum free area available for the fluid flow. In bypass regions theoretical models, based on laws of conservation of mass, momentum, and energy, are used to predict flow velocity and pressure drop. Both in-line and staggered arrangements are studied and their relative performance is compared to the same thermal and hydraulic conditions. A parametric study is also performed to show the effects of bypass on the overall performance of heat sinks.


Author(s):  
Muhammad Ijaz Khan ◽  
Sohail Ahmad Khan ◽  
Tasawar Hayat ◽  
Muhammad Faisal Javed ◽  
Ahmed Alsaedi

Purpose This study aims to examine the flow characteristics of Ree–Eyring fluid between two rotating disks. The characteristics of heat transfer are discussed in presence of viscous dissipation, heat source/sink and nonlinear radiative heat flux. Design/methodology/approach Nonlinear flow expressions lead to ordinary ones through adequate similarity transformations. The ordinary differential system has been tackled through optimal homotopic method. The impact of different flow variables on the velocity field, entropy generation rate and temperature fields is graphically discussed. The surface drag force and heat transfer rate are numerically examined via various pertinent parameters. Findings By minimization of values of stretching parameter and Brinkman number, the entropy generation rate can be controlled. The entropy generation rate enhances for higher values of magnetic parameter, while the Bejan number is decreased via magnetic parameter. Originality/value No such work is yet published in the literature.


Author(s):  
R. K. Jha ◽  
S Chakraborty

This paper deals with estimation of the optimal dimensions of arrays of plate fins cooled by forced convection. The optimization is achieved by minimizing the entropy generation rate using genetic algorithm-based evolutionary computing techniques. Results are presented for staggered plate fins configuration and continuous plate fins configuration. The effects of heat transfer and fluid friction on entropy generation rate are also reported.


1996 ◽  
Vol 118 (2) ◽  
pp. 98-101 ◽  
Author(s):  
Adrian Bejan

It is shown that to maximize the power output of a power plant is equivalent to minimizing the total entropy generation rate associated with the power plant. This equivalence is illustrated by using two of the oldest and simplest models of power plants with heat transfer irreversibilities. To calculate the total entropy generation rate correctly, one must recognize that the optimization process (e.g., the variability of the heat input) requires “room to move,” i.e., an additional, usually overlooked, contribution to the total entropy generation rate.


Sign in / Sign up

Export Citation Format

Share Document