The Study of RBC Deformation in Capillaries With a Lattice Boltzmann Method for Surfactant Covered Droplets

Author(s):  
Hassan Farhat ◽  
Joon Sang Lee

This study aims at analyzing the shape change of red blood cells in the process of streaming through a capillary smaller than the red blood cell diameter. The characteristics of its shape change and velocity can potentially lead to an indicator of a variety of diseases. We approach this problem with considering red blood cells as surfactant covered droplets. This assumption is justified by the fact that the cell membrane liquefies under high pressure in small capillaries, and this allows the marginalization of the mechanical properties of the membrane. The red blood cell membrane is in fact a macro-colloid containing lipid surfactant. When liquefied, it can be treated as a droplet of immiscible hemoglobin covered with lipid surfactant in plasma surrounding. The merit is to analyze the effect of the flow condition and domain geometry on the surfactant concentration change over the droplet interface, and the effect of this change on the surface tension of the droplet. The distribution of the surfactant is calculated by enforcing conservation of the surfactant mass concentration on the interface, leading to a convection diffusion equation. The equation takes account of the effects of the normal and Marangoni stresses as a boundary condition on the interface between the immiscible fluids. The gradient in the surface tension adversely determines the droplet shape by effecting a local change in the capillary number, and influences its velocity by retarding the local surface velocity. The choice of the Gunstensen model is motivated by its capability of handling incompressible fluids, and the locality of the application of the surface tension. We used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2146-2151 ◽  
Author(s):  
Hani Hassoun ◽  
Toshihiko Hanada ◽  
Mohini Lutchman ◽  
Kenneth E. Sahr ◽  
Jiri Palek ◽  
...  

Abstract Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of evidence suggest a close interaction between glycophorin A and band 3 during their biosynthesis. Recently, we have generated mice where the band 3 expression was completely eliminated by selective inactivation of the AE1 anion exchanger gene, thus allowing us to study the effect of band 3 on the expression of red blood cell membrane proteins. In this report, we show that the band 3 −/− red blood cells contain protein 4.1, adducin, dematin, p55, and glycophorin C. In contrast, the band 3 −/− red blood cells are completely devoid of glycophorin A (GPA), as assessed by Western blot and immunocytochemistry techniques, whereas the polymerase chain reaction (PCR) confirmed the presence of GPA mRNA. Pulse-label and pulse-chase experiments show that GPA is not incorporated in the membrane and is rapidly degraded in the cytoplasm. Based on these findings and other published evidence, we propose that band 3 plays a chaperone-like role, which is necessary for the recruitment of GPA to the red blood cell plasma membrane.


Development ◽  
2002 ◽  
Vol 129 (18) ◽  
pp. 4359-4370 ◽  
Author(s):  
Ebrahim Shafizadeh ◽  
Barry H. Paw ◽  
Helen Foott ◽  
Eric C. Liao ◽  
Bruce A. Barut ◽  
...  

The red blood cell membrane skeleton is an elaborate and organized network of structural proteins that interacts with the lipid bilayer and transmembrane proteins to maintain red blood cell morphology, membrane deformability and mechanical stability. A crucial component of red blood cell membrane skeleton is the erythroid specific protein 4.1R, which anchors the spectrin-actin based cytoskeleton to the plasma membrane. Qualitative and quantitative defects in protein 4.1R result in congenital red cell membrane disorders characterized by reduced cellular deformability and abnormal cell morphology. The zebrafish mutants merlot (mot) and chablis (cha) exhibit severe hemolytic anemia characterized by abnormal cell morphology and increased osmotic fragility. The phenotypic analysis of merlot indicates severe hemolysis of mutant red blood cells, consistent with the observed cardiomegaly, splenomegaly, elevated bilirubin levels and erythroid hyperplasia in the kidneys. The result of electron microscopic analysis demonstrates that mot red blood cells have membrane abnormalities and exhibit a severe loss of cortical membrane organization. Using positional cloning techniques and a candidate gene approach, we demonstrate that merlot and chablis are allelic and encode the zebrafish erythroid specific protein 4.1R. We show that mutant cDNAs from both alleles harbor nonsense point mutations, resulting in premature stop codons. This work presents merlot/chablis as the first characterized non-mammalian vertebrate models of hereditary anemia due to a defect in protein 4.1R integrity.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 783
Author(s):  
David W. Inglis ◽  
Robert E. Nordon ◽  
Jason P. Beech ◽  
Gary Rosengarten

Red blood cell (RBC) shape change under static and dynamic shear stress has been a source of interest for at least 50 years. High-speed time-lapse microscopy was used to observe the rate of deformation and relaxation when RBCs are subjected to periodic shear stress and deformation forces as they pass through an obstacle. We show that red blood cells are reversibly deformed and take on characteristic shapes not previously seen in physiological buffers when the maximum shear stress was between 2.2 and 25 Pa (strain rate 2200 to 25,000 s−1). We quantify the rates of RBC deformation and recovery using Kaplan–Meier survival analysis. The time to deformation decreased from 320 to 23 milliseconds with increasing flow rates, but the distance traveled before deformation changed little. Shape recovery, a measure of degree of deformation, takes tens of milliseconds at the lowest flow rates and reached saturation at 2.4 s at a shear stress of 11.2 Pa indicating a maximum degree of deformation was reached. The rates and types of deformation have relevance in red blood cell disorders and in blood cell behavior in microfluidic devices.


Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2146-2151 ◽  
Author(s):  
Hani Hassoun ◽  
Toshihiko Hanada ◽  
Mohini Lutchman ◽  
Kenneth E. Sahr ◽  
Jiri Palek ◽  
...  

Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of evidence suggest a close interaction between glycophorin A and band 3 during their biosynthesis. Recently, we have generated mice where the band 3 expression was completely eliminated by selective inactivation of the AE1 anion exchanger gene, thus allowing us to study the effect of band 3 on the expression of red blood cell membrane proteins. In this report, we show that the band 3 −/− red blood cells contain protein 4.1, adducin, dematin, p55, and glycophorin C. In contrast, the band 3 −/− red blood cells are completely devoid of glycophorin A (GPA), as assessed by Western blot and immunocytochemistry techniques, whereas the polymerase chain reaction (PCR) confirmed the presence of GPA mRNA. Pulse-label and pulse-chase experiments show that GPA is not incorporated in the membrane and is rapidly degraded in the cytoplasm. Based on these findings and other published evidence, we propose that band 3 plays a chaperone-like role, which is necessary for the recruitment of GPA to the red blood cell plasma membrane.


2011 ◽  
Vol 63 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Ionita C. Ghiran ◽  
Mark L. Zeidel ◽  
Sergey S. Shevkoplyas ◽  
Jennie M. Burns ◽  
George C. Tsokos ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yuncheng Man ◽  
Debnath Maji ◽  
Ran An ◽  
Sanjay Ahuja ◽  
Jane A Little ◽  
...  

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...


1999 ◽  
Vol 277 (2) ◽  
pp. H508-H514 ◽  
Author(s):  
Charmaine B. S. Henry ◽  
Brian R. Duling

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 μm from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means ± SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.


Sign in / Sign up

Export Citation Format

Share Document