Harvesting Vibration From Rotating Machinery as a Power Source for a Wireless Sensor Node

Author(s):  
H. Salleh ◽  
N. M. Rashid ◽  
K. A. Wahib

The wireless sensor device which uses battery can cause problems when the wireless nodes are large in number and when the nodes are placed in the difficult area to access. Therefore, it is advantageous for the sensor node to be capable of extracting energy from the environment, making it self-powered, self-sustaining and lowering overall cost of the wireless network. Improvement in integrated circuit (IC) technology has made the overall power consumption of circuit very small which leads to a very promising application of the vibration-based energy harvester micro power generator (VEHM). This paper discusses on some practical design considerations in harvesting vibration from rotating machinery to power up a wireless sensor node. It also focuses on the effect of shape of the VEHM on its power output. These parameters are actually important as part of the key design parameters in harvesting the vibration from ambient. The energy harvester is made of piezoelectric bimorph bender materials poling in series to transform ambient vibrations into electrical energy. The power output for the VEHM made of single and multiple array of PZT bimorph bender are investigated and the effect of triangular and the rectangular PZT bimorph bender are compared. Two sets of VEHM device have been tested to work in the range of 50 Hz–110 Hz to power up a wireless sensor node for condition monitoring application. The experimental results are presented and compared to the previous similar work. It is found that the triangular shape bender generates more power compared to rectangular form whether it is single or multiple connected in series. Testing results proved that triangular VEHM of the same volume and fundamental frequency when compared to rectangular VEHM can improve the overall power generated by the generator.

2011 ◽  
Vol 63-64 ◽  
pp. 978-982 ◽  
Author(s):  
Wen Si Wang ◽  
Ning Ning Wang ◽  
Michael Hayes ◽  
Brendan O'Flynn ◽  
Cian O'Mathuna

Wireless sensor networks are frequently used to monitor temperature and other manufacturing parameters in recent years. However, the limited battery life posts a constraint for large sensor networks. In this work, thermoelectric energy harvester is designed to effectively convert the heat into electrical energy to power the wireless sensor node. Bismuth telluride thermoelectric modules are optimized for low temperature conditions. Charge pump and switching regulator based power management module is designed to efficiently step up the 500mV thermoelectric voltage to 3.0V level for wireless sensor nodes. This design employs electric double-layer capacitor based energy storage with considerations on practical wireless sensor node operation. The implemented energy harvester prototype is proposed for Tyndall wireless sensor system to monitor temperature and relative humidity in manufacturing process. The prototype was tested in various conditions to discover the issues in this practical design. The proposed prototype can expect a 15 years operative lifetime instead of the 3-6 months battery lifetime.


2020 ◽  
Vol 26 (9) ◽  
pp. 2785-2792
Author(s):  
Noor Hidayah Mohd Yunus ◽  
Jahariah Sampe ◽  
Jumril Yunas ◽  
Alipah Pawi ◽  
Zeti Akma Rhazali

2016 ◽  
Vol 6 (13) ◽  
Author(s):  
Geon-Tae Hwang ◽  
Venkateswarlu Annapureddy ◽  
Jae Hyun Han ◽  
Daniel J. Joe ◽  
Changyeon Baek ◽  
...  

Author(s):  
Zhenhuan Zhu ◽  
S. Olutunde Oyadiji

This paper proposes a structure of energy harvester that is used to scavenge environment energy to power wireless sensor nodes. The ambient energy usually is from sunlight, wind, vibration, and so on. As the size of a sensor node is limited, the energy converted is normally small and has a prodigious random fluctuation. In order to improve the conversion efficiency of energy harvester, the paper proposes a power conversion circuit to collect rapidly paroxysmal energy generated by external environment. The circuit, as a power conditioner, bridges between energy transducers and the load of a wireless sensor node, and the power output of transducers are either AC or DC. The power conditioner implements AC-DC conversion, voltage adjusting and energy storage. A design model is developed to describe the dynamic behavior of the power conditioner under the different excitation from ambient energy sources, and energy conversion efficiency can be evaluated with the model. The proposed system architecture can be applied in the design of solar, wind or stochastic vibration energy harvesters.


Author(s):  
Muhammad Iqbal ◽  
Malik M. Nauman ◽  
Farid U. Khan ◽  
Asif Iqbal ◽  
Muhammad Aamir ◽  
...  

2016 ◽  
Vol 6 (13) ◽  
pp. 1600237 ◽  
Author(s):  
Geon-Tae Hwang ◽  
Venkateswarlu Annapureddy ◽  
Jae Hyun Han ◽  
Daniel J. Joe ◽  
Changyeon Baek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document