Combustion of Boron Nano-Particles in Ethanol Spray Flame

Author(s):  
Srinibas Karmakar ◽  
Sumanta Acharya ◽  
Kerry M. Dooley

Biofuels such as ethanol have lower energy density than conventional petroleum-based fuels, and therefore enhancing its energy density via addition of high-energy density components is an attractive option. Boron is an attractive fuel additive because it has among the highest volumetric heating value among potentially suitable additives. The present study deals with an experimental investigation of boron combustion in an ethanol spray flame. A constant low particle loading density of boron nanoparticles (60nm SMD), around 1% (by weight) of the liquid fuel flow rate, has been used. Though it has high energetic potential, the combustion process of boron is retarded by the initial presence of the oxide coating the particle surface. In the present study, measurements have been made of the emission of intermediate sub-oxide like BO2 using spectroscopy and imaging with interference filters. The effect of boron on the hydrocarbon combustion has also been studied by examining the heat release and product mole fractions. In addition, particle characterization has been carried out to know the size, surface structure/composition of the injected boron nano powders using XRD, XPS and TEM. A preliminary investigation has also been performed on the burnt particle collected from the exhaust structure using XRD. The chemiluminescence and spectroscopic signatures indicate that boron combustion is facilitated and that hydrocarbon combustion is enhanced. The particle analysis shows differences in the imaged and spectroscopic characteristics of the unburnt and burnt nano-particles reflecting the particle-combustion processes.

2021 ◽  
Vol 21 (11) ◽  
pp. 5556-5568
Author(s):  
S. Maitra ◽  
R. Mitra ◽  
T. K. Nath

In recent years, solid solutions have shown promising results as functional materials for different applications. These materials have tunable physiochemical properties and electronic properties, and are being intensively studied for next generation electrochemical charge storage as well as noble metal free low cost electrocatalyts. In the present work, Magnesium Nickel Oxide (MgNiO2) solid solution is prepared by molten salt synthesis. MgNiO2 particles having octahedron shaped morphology with size of 550 nm with an agglomerative behavior was observed through morphological studies. Raman studies revealed presence of three two-phonon modes as well as two one-phonon modes, which confirm the phase purity of MgNiO2 sample. MgNiO2 particles behaved as a promising supercapacitor candidate by exhibiting a large specific capacitance of 76 F/g. It also revealed electrochemical stability over an expansive potential range under the presence of 0.5 mol L-1Sodium Sulfate (Na2SO4) electrolyte, having a high energy density of nearly 51 Wh/kg with a power density of nearly 825 w/kg. Further, MgNiO2 particle showed improved electrocatalytic potential towards Hydrogen Evolution Reaction (HER) in 1 mol L-1 Potassium Hydroxide (KOH) alkaline medium, by demonstrating an overpotential of 0.636 V with a Tafel slope of 0.22205 v/dec. Based on these observed promising results, it can be conclusively inferred that MgNiO2 solid solution is a potential candidate for environmental friendly high voltage supercapacitor and HER electrocatalyst applications.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5526
Author(s):  
Roberto Moreno-Soriano ◽  
Froylan Soriano-Moranchel ◽  
Luis Armando Flores-Herrera ◽  
Juan Manuel Sandoval-Pineda ◽  
Rosa de Guadalupe González-Huerta

One of the main methods used to generate thermal energy is the combustion process. Burners are used in both industrial and residential applications of the open combustion process. The use of fuels that reduce polluting gas emissions and costs in industrial and residential processes is currently a topic of significant interest. Hydrogen is considered an attractive fuel for application in combustion systems due to its high energy density, wide flammability range, and only produces water vapor as waste. Compared to research conducted regarding hydrocarbon combustion, studies on hydrogen burners have been limited. This paper presents the design and evaluation of an oxyhydrogen gas burner for the atmospheric combustion process. The gas is generated in situ with an alkaline electrolyzer with a production rate of up to 3 sL min−1. The thermal efficiency of a gas burner is defined as the percentage of the input thermal energy transferred to the desired load with respect to a given time interval. The experimental results show a thermal efficiency of 30% for a minimum flow rate of 1.5 sL min−1 and 76% for a flow rate of 3.5 sL min−1. These results relate to a 10 mm height between the burner surface and heated container.


1966 ◽  
Author(s):  
S. CHODOSH ◽  
E. KATSOULIS ◽  
M. ROSANSKY

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

2018 ◽  
Vol 28 (5) ◽  
pp. 273-278
Author(s):  
Beomhee Kang ◽  
Soonhyun Hong ◽  
Hongkwan Yoon ◽  
Dojin Kim ◽  
Chunjoong Kim

2000 ◽  
Author(s):  
Robert J. Schmitt ◽  
Jeffrey C. Bottaro ◽  
Mark Petrie ◽  
Paul E. Penwell

Sign in / Sign up

Export Citation Format

Share Document