Experimental Investigation of Film Cooling Effectiveness for a New Shaped Hole at the Leading Edge

Author(s):  
T. Elnady ◽  
I. Hassan ◽  
L. Kadem ◽  
T. Lucas

An experimental investigation has been performed to study the film cooling of a smooth expansion exit at the leading edge of a gas turbine vane. A two-dimensional cascade has been employed to measure the cooling performance of the proposed expansion using a transient Thermochromatic Liquid Crystal technique. One row of cylindrical holes, located on the stagnation line, is investigated with two expansion levels at the hole exit, 2d and 4d, in addition to the standard cylindrical exit. The air is injected at 0° and 30° inclination angles with the mainstream direction at four blowing ratios ranging from 1 and 2 and a 0.9 density ratio. The Mach number and the Reynolds number based on the cascade exit velocity and the axial chord are 0.23 and 1.4E5, respectively. The detailed local cooling effectiveness over both the pressure side and the suction side are presented in addition to the lateral-averaged cooling effectiveness. The proposed expansion enhances the coolant distribution over the leading edge, particularly over the suction side. The cooling effectiveness increases with the increase of the blowing ratio due to the decrease in the jet lift-off, hence higher cooling capacity is provided. The complete confrontation between both streams on the 0° inclination angle causes a strong dispersion to the coolant, yielding a significant reduction in the effectiveness.

Author(s):  
Akhilesh P. Rallabandi ◽  
Shiou-Jiuan Li ◽  
Je-Chin Han

The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke wheel wake generator) on the modeled rotor blade is studied using the Pressure Sensitive Paint (PSP) mass transfer analogy method. Emphasis of the current study is on the mid-span region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film cooling holes. The blade also has radial shower-head leading edge film cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds Number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side; 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


2011 ◽  
Vol 383-390 ◽  
pp. 3963-3968
Author(s):  
Shao Hua Li ◽  
Li Mei Du ◽  
Wen Hua Dong ◽  
Ling Zhang

In this paper, a numerical simulation was performed to investigate heat transferring characteristics on the leading edge of a blade with three rows of holes of film-cooling using Realizable k- model. Three rows of holes were located on the suction side leading edge stagnation line and the pressure surface. The difference of the cooling efficiency and the heat transfer of the three rows of holes on the suction side and pressure side were analyzed; the heat transfer and film cooling effectiveness distribution in the region of leading edge are expounded under different momentum rations.The results show that under the same condition, the cooling effectiveness on the pressure side is more obvious than the suction side, but the heat transfer is better on the suction side than the pressure side. The stronger momentum rations are more effective cooling than the heat transfer system.


Author(s):  
T. Elnady ◽  
O. Hassan ◽  
I. Hassan ◽  
L. Kadem ◽  
T. Lucas

An experimental investigation has been performed to measure the film cooling performance of louver scheme over a scaled vane of high-pressure gas turbine using a two-dimensional cascade. Two rows of axially oriented louver scheme are used to cool the suction side and their performance is compared with two similar rows of standard cylindrical holes. The effect of hole location on the cooling performance is investigated for each row individually, then the row interaction is investigated for both rows at four different blowing ratios ranging from 1 to 2 with a 0.9 density ratio. The exit Reynolds number based on the true chord is 1.5E5 and exit Mach number is 0.23. The temperature distribution on the vane is mapped using a transient Thermochromic Liquid Crystal (TLC) technique to obtain the local distributions of the heat transfer coefficient and film cooling effectiveness. The louver scheme shows a superior cooling effectiveness than that of the cylindrical holes at all blowing ratios in terms of protection and lateral coverage. The row location highly affects the cooling performance for both the louver and cylindrical scheme.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined systematically on a typical high pressure turbine blade by varying three critical flow parameters: coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three coolant density ratios 1.0, 1.5, and 2.0 are chosen for this study. The average blowing ration and the turbulence intensity are 1.5% and 10.5%, respectively. Conduction-free pressure sensitive paint (PSP) technique is used to measure film-cooling effectiveness. Foreign gases are used to study the effect of coolant density. Two test blades feature axial angle and 45 deg compound-angle shaped holes on the suction side and pressure side. Both designs have 3 rows of 30 deg radial-angle cylindrical holes around the leading edge region. The inlet and the exit Mach number are 0.27 and 0.44, respectively. Reynolds number based on the exit velocity and blade axial chord length is 750,000. Overall, the compound angle design performs better film coverage that axial angle. Greater coolant-to-mainstream density ratio results in lower coolant-to-mainstream momentum and prevents coolant to lift-off.


Author(s):  
Chao-Cheng Shiau ◽  
Nafiz H. K. Chowdhury ◽  
Je-Chin Han ◽  
Alexander V. Mirzamoghadam ◽  
Ardeshir Riahi

This work focuses on the parametric experimental study of film cooling effectiveness on the suction side of a scaled turbine vane under transonic flow condition. The experiments were performed in a five-vane annular sector cascade blowdown facility. The controlled exit Mach numbers were 0.7, 0.9, and 1.1, from high subsonic to transonic conditions. N2, CO2, and Argon/SF6 mixture were used to investigate the effects of coolant-to-mainstream density ratios, ranging from 1.0, 1.5 to 2.0. Three row-averaged coolant-to-mainstream blowing ratios in the range 0.7, 1.0, and 1.6 are studied. The test vane includes three rows of radial-angle cylindrical holes around the leading edge and two rows of compound-angle shaped holes on the suction side. All the cooling holes are active in order to study the resultant film cooling on suction side as well as from leading edge. Pressure sensitive paint (PSP) technique was used to obtain the film cooling effectiveness distributions from suction side holes and the contribution from leading edge showerhead holes. This work shows the effects of coolant-to-mainstream blowing ratio, density ratio, and exit Mach number on the film cooling effectiveness as well as its interaction with a potential shock wave. The results indicate that when the cooling holes are located in a critical region on the vane suction surface, the parametric effect on film cooling performance will significantly deviate from the common trend for a typical hole geometry.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio and blowing ratio are studied. Computational simulations are performed using the realizable k-ε turbulence model. Effectiveness obtained by CFD simulations are compared with experiments. Three leading edge profiles, including one semi-cylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semi-cylinder model, shaped holes are located at 0 degrees (stagnation line) and ± 30 degrees. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,900 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile and on turbine blade leading edge region film cooling with shaped-hole designs.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


Author(s):  
Nafiz H. K. Chowdhury ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

The performance of a full coverage film cooling configuration called cross-row (CR) configuration including upstream inlet leakage flow was studied by measuring the adiabatic film cooling effectiveness distribution using PSP technique. Experiments were conducted in a blow-down wind tunnel cascade facility at the isentropic exit Mach number of 0.5 corresponding to inlet Reynolds number of 3.8 × 105, based on axial chord length. A free-stream turbulence level was generated as high as 19% with a length scale of 1.7 cm at the inlet. The results are presented as two-dimensional adiabatic film cooling effectiveness distributions on the endwall surface with corresponding spanwise averaged distributions. The focus of this study is to investigate the effect of coolant-to-mainstream mass flow ratio (MFR) and density ratio (DR) on the proposed endwall cooling design. Initially, increased MFR for the endwall cooling and upstream leakage levels up the local adiabatic cooling effectiveness and yields relatively uniform coverage on the entire endwall. However, in either case, highest MFR does not provide any improvement as endwall cooling suffered from the jet lift-off and leakage coolant coverage restricted by the downstream near-wall flow field. Results also indicated a density ratio of 1.5 provides the best performance. Finally, a fair comparison is made with another design called axial-row (AR) configuration from a companion paper.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Sign in / Sign up

Export Citation Format

Share Document