Dynamic Simulation of a Beta-Type Stirling Engine With Cam-Drive Mechanism

Author(s):  
Ying-Ju Yu ◽  
Chin-Hsiang Cheng

Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism has been performed. A dynamic model associated with the cam-drive mechanism has been developed. Upon obtaining the gas pressure inside the chambers, the derived dynamic model is used to evaluate the transient rotational speed of the engine before the steady-state regime is reached. The torque of the engine can be calculated as long as the gas force, the inertia torque, the friction torque, and the load torque are evaluated. In this study, the mass moment of inertia of the flywheel is firstly calculated. The friction torque is assumed to be proportional to the time-varied rotational speed which is obtained by experiments. The weight of the individual parts of the engine has also been considered. An extensive parametric study of the engine under different geometrical and operating conditions has been performed and results are presented.

Energy ◽  
2018 ◽  
Vol 161 ◽  
pp. 892-906 ◽  
Author(s):  
Hang-Suin Yang ◽  
Chin-Hsiang Cheng ◽  
Shang-Ting Huang

2018 ◽  
Vol 198 ◽  
pp. 06002
Author(s):  
Chaoqun Qi ◽  
Huibo Zhang ◽  
Bindi You ◽  
Jizhuang Fan ◽  
Shijie Dai

The dual-axis drive mechanism of satellite antenna as a typical multi-joint aerospace mechanism consists of azimuth axis and pitch axis. The multi-clearance contained within those drive joint cause contact and impact in joint, and consequently affect the dynamic positioning accuracy. A nonlinear dynamic model of planetary gears with multiple clearances couplings is proposed to investigate the influence mechanism of clearances on the dynamic performances. The nonlinear factors such as radial clearance, backlash and time-varying meshing stiffness of the bearing are considered in the model. And the dynamic model of double-axis driving mechanism of satellite antenna with multi-clearance coupling is established. Then positional and rotational speed error curves of antenna reflector at different rotational speed are respectively analyzed. The numerical simulation results show that the influence of multi-clearance coupling on the dynamic positioning accuracy of double-axis drive mechanism of satellite antenna is remarkable.


2021 ◽  
Vol 13 (14) ◽  
pp. 7998
Author(s):  
Maxime Binama ◽  
Kan Kan ◽  
Hui-Xiang Chen ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
...  

The utilization of pump as turbines (PATs) within water distribution systems for energy regulation and hydroelectricity generation purposes has increasingly attracted the energy field players’ attention. However, its power production efficiency still faces difficulties due to PAT’s lack of flow control ability in such dynamic systems. This has eventually led to the introduction of the so-called “variable operating strategy” or VOS, where the impeller rotational speed may be controlled to satisfy the system-required flow conditions. Taking from these grounds, this study numerically investigates PAT eventual flow structures formation mechanism, especially when subjected to varying impeller rotational speed. CFD-backed numerical simulations were conducted on PAT flow under four operating conditions (1.00 QBEP, 0.82 QBEP, 0.74 QBEP, and 0.55 QBEP), considering five impeller rotational speeds (110 rpm, 130 rpm, 150 rpm, 170 rpm, and 190 rpm). Study results have shown that both PAT’s flow and pressure fields deteriorate with the machine influx decrease, where the impeller rotational speed increase is found to alleviate PAT pressure pulsation levels under high-flow operating conditions, while it worsens them under part-load conditions. This study’s results add value to a thorough understanding of PAT flow dynamics, which, in a long run, contributes to the solution of the so-far existent technical issues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meku Maruyama ◽  
Riku Matsuura ◽  
Ryo Ohmura

AbstractHydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5–284.9 K under the pressure of 4.9–5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.


2021 ◽  
Vol 11 (7) ◽  
pp. 2917
Author(s):  
Madalina Rabung ◽  
Melanie Kopp ◽  
Antal Gasparics ◽  
Gábor Vértesy ◽  
Ildikó Szenthe ◽  
...  

The embrittlement of two types of nuclear pressure vessel steel, 15Kh2NMFA and A508 Cl.2, was studied using two different methods of magnetic nondestructive testing: micromagnetic multiparameter microstructure and stress analysis (3MA-X8) and magnetic adaptive testing (MAT). The microstructure and mechanical properties of reactor pressure vessel (RPV) materials are modified due to neutron irradiation; this material degradation can be characterized using magnetic methods. For the first time, the progressive change in material properties due to neutron irradiation was investigated on the same specimens, before and after neutron irradiation. A correlation was found between magnetic characteristics and neutron-irradiation-induced damage, regardless of the type of material or the applied measurement technique. The results of the individual micromagnetic measurements proved their suitability for characterizing the degradation of RPV steel caused by simulated operating conditions. A calibration/training procedure was applied on the merged outcome of both testing methods, producing excellent results in predicting transition temperature, yield strength, and mechanical hardness for both materials.


Author(s):  
Mustafa Babagiray ◽  
Hamit Solmaz ◽  
Duygu İpci ◽  
Fatih Aksoy

In this study, a dynamic model of a single-cylinder four-stroke diesel engine has been created, and the crankshaft speed fluctuations have been simulated and validated. The dynamic model of the engine consists of the motion equations of the piston, conrod, and crankshaft. Conrod motion was modeled by two translational and one angular motion equations, by considering the kinetic energy resulted from the mass moment of inertia and conrod mass. Motion equations involve in-cylinder gas pressure forces, hydrodynamic and dry friction, mass inertia moments of moving parts, starter moment, and external load moment. The In-cylinder pressure profile used in the model was obtained experimentally to increase the accuracy of the model. Pressure profiles were expressed mathematically using the Fourier series. The motion equations were solved by using the Taylor series method. The solution of the mathematical model was performed by coding in the MATLAB interface. Cyclic speed fluctuations obtained from the model were compared with experimental results and found compitable. A validated model was used to analyze the effects of in-cylinder pressure, mass moment of inertia of crankshaft and connecting rod, friction, and piston mass. In experiments for 1500, 1800, 2400, and 2700 rpm engine speeds, crankshaft speed fluctuations were observed as 12.84%, 8.04%, 5.02%, and 4.44%, respectively. In simulations performed for the same speeds, crankshaft speed fluctuations were calculated as 10.45%, 7.56%, 4.49%, and 3.65%. Besides, it was observed that the speed fluctuations decreased as the average crankshaft speed value increased. In the simulation for 157.07, 188.49, 219.91, 251.32, and 282.74 rad/s crankshaft speeds, crankshaft speed fluctuations occurred at rates of 10.45%, 7.56%, 5.84%, 4.49%, and 3.65%, respectively. The effective engine power was achieved as 5.25 kW at an average crankshaft angular speed of 219.91 rad/s. The power of friction loss in the engine was determined as 0.68 kW.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


2007 ◽  
Vol 36 (3) ◽  
pp. 218-223 ◽  
Author(s):  
M. Ya. Izrailovich ◽  
A. V. Sinev ◽  
V. F. Shcherbakov ◽  
R. V. Kangun

Sign in / Sign up

Export Citation Format

Share Document