scholarly journals Crystal growth of clathrate hydrate formed with H2 + CO2 mixed gas and tetrahydropyran

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meku Maruyama ◽  
Riku Matsuura ◽  
Ryo Ohmura

AbstractHydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5–284.9 K under the pressure of 4.9–5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.

2011 ◽  
Vol 201-203 ◽  
pp. 471-475 ◽  
Author(s):  
Qiang Wu ◽  
Xia Gao ◽  
Bao Yong Zhang

The new methods for separating, storing and transporting drained coal mine methane (CMM) is based on gas hydrate formation. The kinetic hydration process is studied experimentally in detail for two kinds of synthesized CMM with three concentratons of SDS solution. The hydration rates in six experimental systems are calculated using the self-established model to compare the effect of SDS. The results show that the establised model can precisely calculate the hydration rate; SDS decreases the gas hydration rate. This is due to the reason that SDS in the hydrate growth stage, can strengthen the hydrogen bond of water molecules, and be absorbed to the metal wall of the high pressure cell, the SDS membrane can react with mine gas and form crystal nucleus, thus, the hydrate formation rate is raised. It can provide the reference for seeking the optimal surfactants in the hydrate formation process for the mixed gas.


2016 ◽  
Vol 1133 ◽  
pp. 639-643
Author(s):  
Qazi Nasir ◽  
Bhajan Lal ◽  
Lau Kok Keong

Besides other application of clathrate hydrates, hydrate-based CO2capture and storage are potentially important where additives are commonly used to speed up the hydrate formation processes in order to gain on scientific, technological and economic interest. In this work combination of additives such as tetrahydrofuran and sodium dodecyl sulphate (THF/SDS) on mixed gas hydrate formation and dissociation condition have been investigated using a graphical method. The measurements were carried out at temperature and pressure range of (265 to 300) K and (1 to 5) MPa. The presence of additive 3 mol % THF has drastically increased in the hydrate stability region while with the combination of SDS + THF lower the hydrate equilibrium temperature marginally.


Author(s):  
Pham V. Huong ◽  
Stéphanie Bouchet ◽  
Jean-Claude Launay

Microstructure of epitaxial layers of doped GaAs and its crystal growth dynamics on single crystal GaAs substrate were studied by Raman microspectroscopy with a Dilor OMARS instrument equipped with a 1024 photodiode multichannel detector and a ion-argon laser Spectra-Physics emitting at 514.5 nm.The spatial resolution of this technique, less than 1 μm2, allows the recording of Raman spectra at several spots in function of thickness, from the substrate to the outer deposit, including areas around the interface (Fig.l).The high anisotropy of the LO and TO Raman bands is indicative of the orientation of the epitaxial layer as well as of the structural modification in the deposit and in the substrate at the interface.With Sn doped, the epitaxial layer also presents plasmon in Raman scattering. This fact is already very well known, but we additionally observed that its frequency increases with the thickness of the deposit. For a sample with electron density 1020 cm-3, the plasmon L+ appears at 930 and 790 cm-1 near the outer surface.


2018 ◽  
Author(s):  
Kyle Hall ◽  
Zhengcai Zhang ◽  
Christian Burnham ◽  
Guang-Jun Guo ◽  
Sheelagh Carpendale ◽  
...  

<p>The broad scientific and technological importance of crystallization has led to significant research probing and rationalizing crystallization processes, particularly how nascent</p> <p>crystal phases appear. Previous work has generally neglected the possibility of the molecular-level dynamics of individual nuclei coupling to local structures (e.g., that of the nucleus and its</p> <p>surrounding environment). However, recent experimental work has conjectured that this can occur. Therefore, to address a deficiency in scientific understanding of crystallization, we have</p> <p>probed the nucleation of prototypical single and multi-component crystals (specifically, ice and mixed gas hydrates). Here, we establish that local structures can bias the evolution of nascent</p> <p>crystal phases on a nanosecond timescale by, for example, promoting the appearance or disappearance of specific crystal motifs, and thus reveal a new facet of crystallization behaviour.</p> <p>Analysis of the crystallization literature confirms that structural biases are likely present during crystallization processes beyond ice and gas hydrate formation. Moreover, we demonstrate that</p> <p>structurally-biased dynamics are a lens for understanding existing computational and experimental results while pointing to future opportunities.</p>


2018 ◽  
Author(s):  
Kyle Hall ◽  
Zhengcai Zhang ◽  
Christian Burnham ◽  
Guang-Jun Guo ◽  
Sheelagh Carpendale ◽  
...  

<p>The broad scientific and technological importance of crystallization has led to significant research probing and rationalizing crystallization processes, particularly how nascent</p> <p>crystal phases appear. Previous work has generally neglected the possibility of the molecular-level dynamics of individual nuclei coupling to local structures (e.g., that of the nucleus and its</p> <p>surrounding environment). However, recent experimental work has conjectured that this can occur. Therefore, to address a deficiency in scientific understanding of crystallization, we have</p> <p>probed the nucleation of prototypical single and multi-component crystals (specifically, ice and mixed gas hydrates). Here, we establish that local structures can bias the evolution of nascent</p> <p>crystal phases on a nanosecond timescale by, for example, promoting the appearance or disappearance of specific crystal motifs, and thus reveal a new facet of crystallization behaviour.</p> <p>Analysis of the crystallization literature confirms that structural biases are likely present during crystallization processes beyond ice and gas hydrate formation. Moreover, we demonstrate that</p> <p>structurally-biased dynamics are a lens for understanding existing computational and experimental results while pointing to future opportunities.</p>


2021 ◽  
Vol 11 (7) ◽  
pp. 2917
Author(s):  
Madalina Rabung ◽  
Melanie Kopp ◽  
Antal Gasparics ◽  
Gábor Vértesy ◽  
Ildikó Szenthe ◽  
...  

The embrittlement of two types of nuclear pressure vessel steel, 15Kh2NMFA and A508 Cl.2, was studied using two different methods of magnetic nondestructive testing: micromagnetic multiparameter microstructure and stress analysis (3MA-X8) and magnetic adaptive testing (MAT). The microstructure and mechanical properties of reactor pressure vessel (RPV) materials are modified due to neutron irradiation; this material degradation can be characterized using magnetic methods. For the first time, the progressive change in material properties due to neutron irradiation was investigated on the same specimens, before and after neutron irradiation. A correlation was found between magnetic characteristics and neutron-irradiation-induced damage, regardless of the type of material or the applied measurement technique. The results of the individual micromagnetic measurements proved their suitability for characterizing the degradation of RPV steel caused by simulated operating conditions. A calibration/training procedure was applied on the merged outcome of both testing methods, producing excellent results in predicting transition temperature, yield strength, and mechanical hardness for both materials.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3615
Author(s):  
Florian Filarsky ◽  
Julian Wieser ◽  
Heyko Juergen Schultz

Gas hydrates show great potential with regard to various technical applications, such as gas conditioning, separation and storage. Hence, there has been an increased interest in applied gas hydrate research worldwide in recent years. This paper describes the development of an energetically promising, highly attractive rapid gas hydrate production process that enables the instantaneous conditioning and storage of gases in the form of solid hydrates, as an alternative to costly established processes, such as, for example, cryogenic demethanization. In the first step of the investigations, three different reactor concepts for rapid hydrate formation were evaluated. It could be shown that coupled spraying with stirring provided the fastest hydrate formation and highest gas uptakes in the hydrate phase. In the second step, extensive experimental series were executed, using various different gas compositions on the example of synthetic natural gas mixtures containing methane, ethane and propane. Methane is eliminated from the gas phase and stored in gas hydrates. The experiments were conducted under moderate conditions (8 bar(g), 9–14 °C), using tetrahydrofuran as a thermodynamic promoter in a stoichiometric concentration of 5.56 mole%. High storage capacities, formation rates and separation efficiencies were achieved at moderate operation conditions supported by rough economic considerations, successfully showing the feasibility of this innovative concept. An adapted McCabe-Thiele diagram was created to approximately determine the necessary theoretical separation stage numbers for high purity gas separation requirements.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Tommy R. Powell ◽  
James P. Szybist ◽  
Flavio Dal Forno Chuahy ◽  
Scott J. Curran ◽  
John Mengwasser ◽  
...  

Modern boosted spark-ignition (SI) engines and emerging advanced compression ignition (ACI) engines operate under conditions that deviate substantially from the conditions of conventional autoignition metrics, namely the research and motor octane numbers (RON and MON). The octane index (OI) is an emerging autoignition metric based on RON and MON which was developed to better describe fuel knock resistance over a broader range of engine conditions. Prior research at Oak Ridge National Laboratory (ORNL) identified that OI performs reasonably well under stoichiometric boosted conditions, but inconsistencies exist in the ability of OI to predict autoignition behavior under ACI strategies. Instead, the autoignition behavior under ACI operation was found to correlate more closely to fuel composition, suggesting fuel chemistry differences that are insensitive to the conditions of the RON and MON tests may become the dominant factor under these high efficiency operating conditions. This investigation builds on earlier work to study autoignition behavior over six pressure-temperature (PT) trajectories that correspond to a wide range of operating conditions, including boosted SI operation, partial fuel stratification (PFS), and spark-assisted compression ignition (SACI). A total of 12 different fuels were investigated, including the Co-Optima core fuels and five fuels that represent refinery-relevant blending streams. It was found that, for the ACI operating modes investigated here, the low temperature reactions dominate reactivity, similar to boosted SI operating conditions because their PT trajectories lay close to the RON trajectory. Additionally, the OI metric was found to adequately predict autoignition resistance over the PT domain, for the ACI conditions investigated here, and for fuels from different chemical families. This finding is in contrast with the prior study using a different type of ACI operation with different thermodynamic conditions, specifically a significantly higher temperature at the start of compression, illustrating that fuel response depends highly on the ACI strategy being used.


2019 ◽  
Vol 113 ◽  
pp. 02017
Author(s):  
Mariagiovanna Minutillo ◽  
Alessandra Perna ◽  
Alessandro Sorce

This paper focuses on a biofuel-based Multi-Energy System generating electricity, heat and hydrogen. The proposed system, that is conceived as refit option for an existing anaerobic digester plant in which the biomass is converted to biogas, consists of: i) a fuel processing unit, ii) a power production unit based on the SOFC (Solid Oxide Fuel Cell) technology, iii) a hydrogen separation, compression and storage unit. The aim of this study is to define the operating conditions that allow optimizing the plant performances by applying the exergy analysis that is an appropriate technique to assess and rank the irreversibility sources in energy processes. Thus, the exergy analysis has been performed for both the overall plant and main plant components and the main contributors to the overall losses have been evaluated. Moreover, the first principle efficiency and the second principle efficiency have been estimated. Results have highlighted that the fuel processor (the Auto-Thermal Reforming reactor) is the main contributor to the global exergy destruction (9.74% of the input biogas exergy). In terms of overall system performance the plant has an exergetic efficiency of 53.1% (it is equal to 37.7% for the H2 production).


Sign in / Sign up

Export Citation Format

Share Document