mass moment of inertia
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 26)

H-INDEX

12
(FIVE YEARS 1)

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 252
Author(s):  
Nathir Rawashdeh ◽  
Nader Abu-Alrub

In this work, a design of a gripper for the underwater OpenROV vehicle is presented. OpenROV is an open-source underwater vehicle design for remote underwater exploration. It can enable systems of underwater internet of things and real-time monitoring. Mechanical aspects of the presented gripper design are discussed including actuation, motion transmission, kinematics and general arrangement, which resembles a delta robot. The Denavit-Hartenberg (DH) notation will be employed to define reference frames on one of the fingers in order to build transformation matrices and the forward kinematics matrix. The results from the forward kinematics are used to define the workspace that can be covered by each finger. The maximum force from the fingertip is estimated using Newton-Euler equations. Finally, the transfer function and the mass moment of inertia of the second link in the finger, that is, the fingertip is calculated for control simulations. A control stability analysis is provided and shows a stable system.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5611
Author(s):  
Peter Ibrahim ◽  
Mustafa Arafa ◽  
Yasser Anis

This paper presents a vibration-based electromagnetic energy harvester whose resonance frequency can be adjusted to match that of the excitation. Frequency adjustment is attained by controlling a rotatable arm, with tuning masses, at the tip of a cantilever-type energy harvester, thereby changing the effective mass moment of inertia of the system. The rotatable arm is mounted on a servomotor that is autonomously controlled through a microcontroller and a photo sensor to keep the device at resonance for maximum power generation. A mathematical model is developed to predict the system response for different design parameters and to estimate the generated power. The system is investigated analytically by a distributed-parameter model to study the natural frequency variation and dynamic response. The analytical model is verified experimentally where the frequency is tuned from 8 to 10.25 Hz. A parametric study is performed to study the effect of each parameter on the system behavior.


Author(s):  
Mustafa Babagiray ◽  
Hamit Solmaz ◽  
Duygu İpci ◽  
Fatih Aksoy

In this study, a dynamic model of a single-cylinder four-stroke diesel engine has been created, and the crankshaft speed fluctuations have been simulated and validated. The dynamic model of the engine consists of the motion equations of the piston, conrod, and crankshaft. Conrod motion was modeled by two translational and one angular motion equations, by considering the kinetic energy resulted from the mass moment of inertia and conrod mass. Motion equations involve in-cylinder gas pressure forces, hydrodynamic and dry friction, mass inertia moments of moving parts, starter moment, and external load moment. The In-cylinder pressure profile used in the model was obtained experimentally to increase the accuracy of the model. Pressure profiles were expressed mathematically using the Fourier series. The motion equations were solved by using the Taylor series method. The solution of the mathematical model was performed by coding in the MATLAB interface. Cyclic speed fluctuations obtained from the model were compared with experimental results and found compitable. A validated model was used to analyze the effects of in-cylinder pressure, mass moment of inertia of crankshaft and connecting rod, friction, and piston mass. In experiments for 1500, 1800, 2400, and 2700 rpm engine speeds, crankshaft speed fluctuations were observed as 12.84%, 8.04%, 5.02%, and 4.44%, respectively. In simulations performed for the same speeds, crankshaft speed fluctuations were calculated as 10.45%, 7.56%, 4.49%, and 3.65%. Besides, it was observed that the speed fluctuations decreased as the average crankshaft speed value increased. In the simulation for 157.07, 188.49, 219.91, 251.32, and 282.74 rad/s crankshaft speeds, crankshaft speed fluctuations occurred at rates of 10.45%, 7.56%, 5.84%, 4.49%, and 3.65%, respectively. The effective engine power was achieved as 5.25 kW at an average crankshaft angular speed of 219.91 rad/s. The power of friction loss in the engine was determined as 0.68 kW.


Author(s):  
Hubert Sar ◽  
Mateusz Brukalski ◽  
Krzysztof Rokicki

Modelling of vehicle’s motion is one of the solutions applied in the research of automotive safety. There is always a discussion which model should be used for computer simulation. Models with higher number of degrees of freedom require identification of many parameters, which are usually difficult to obtain. So, very often relatively simple flat model of vehicle’s motion is applied. It needs only such parameters as mass of a vehicle, location of centre of gravity from front and rear axle, yaw mass moment of inertia and side slip characteristics of the front and rear axle. In this paper the upper mentioned model was applied, considering different side slip characteristics of the front and rear axle. The scenario of vehicle’s motion was based on random changes of steering wheel angle during the road test, recording signals from on-board CAN (Controller Area Network) bus of automobile simultaneously, which were further applied in simulation.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
David Curtis ◽  
Ben Heller ◽  
Terry Senior

AbstractMass moment of inertia is a key inertial property of cricket bats and should be used in selection to optimise performance. Players currently rely on a subjective assessment of how the bat feels when swung supported only by a value for bat mass from the manufacturer. This reliance on a subjective assessment is because the moment of inertia of a bat typically requires a pendulum method to measure with sufficient accuracy. In this study, two methods for estimating moment of inertia were tested. The hypotheses were that (1) an acceptable estimate of moment of inertia could be calculated using a beam model approach, and (2) the inertial property first moment could act as a proxy measure for moment of inertia. Experimental values for moment of inertia were obtained using a pendulum method. The two-section beam model showed an error of 0.43–0.53% between model and experimental values based on a Root Mean Square Error of 0.0017 kg m2. First moment data were generated on 5005 bats spread across eight bat shapes. A correlation was shown between the measured value of first moment and the beam model value of moment of inertia, with an R2 value > 0.992 for all bat shapes. This study showed that a two-section beam model and first moment method for estimating cricket bat moment of inertia could be used to improve bat selection.


2021 ◽  
Vol 92 (3) ◽  
pp. 172-181
Author(s):  
Laura A. Healey ◽  
Aaron J. Derouin ◽  
Jack P. Callaghan ◽  
Duane S. Cronin ◽  
Steven L. Fischer

BACKGROUND: Mass, moment of inertia, and amplitude of neck motion were altered during a reciprocal scanning task to investigate how night vision goggles (NVGs) use mechanistically is associated with neck trouble among rotary-wing aircrew.METHODS: There were 30 subjects measured while scanning between targets at 2 amplitudes (near and far) and under 4 head supported mass conditions (combinations of helmet, NVGs, and counterweights). Electromyography (EMG) was measured bilaterally from the sternocleidomastoid and upper neck extensors. Kinematics were measured from the trunk and head.RESULTS: Scanning between the far amplitude targets required higher peak angular accelerations (7% increase) and neck EMG (between 1.24.5% increase), lower muscle cocontraction ratios (6.7% decrease), and fewer gaps in EMG (up to a 59% decrease) relative to the near targets. Increasing the mass of the helmet had modest effects on neck EMG, while increasing the moment of inertia did not.DISCUSSION: Target amplitude, not head supported mass configuration, had a greater effect on exposure metrics. Use of NVGs restricts field-of-view, requiring an increased amplitude of neck movement. This may play an important role in understanding links between neck trouble and NVG use.Healey LA, Derouin AJ, Callaghan JP, Cronin DS, Fischer SL. Night vision goggle and counterweight use affect neck muscle activity during reciprocal scanning. Aerosp Med Hum Perform. 2021; 92(3):172181.


2021 ◽  
Vol 8 (3) ◽  
pp. 474-485
Author(s):  
M. V. Vavrukh ◽  
◽  
D. V. Dzikovskyi ◽  

A new method for finding solutions of the nonlinear equilibrium equations for rotational polytropes was proposed, which is based on a self-consistent description of internal region and periphery using the integral form of equations. Dependencies of geometrical parameters, surface form, mass, moment of inertia and integration constants on angular velocity were calculated for indices $n=2.5$ and $n=3$.


Sign in / Sign up

Export Citation Format

Share Document