Analysis of Solar Organic Rankine Cycle for a Building in Hot and Humid Climate

Author(s):  
Rambod Rayegan ◽  
Yong X. Tao

The objective of this paper is to model and analyze the solar Organic Rankine Cycle (ORC) engine for a geothermal air-conditioned net zero-energy building (NZEB) in a hot and humid climate. In the authors’ previous work, 11 fluids have been suggested to be employed in solar ORCs that use low or medium temperature solar collectors. In this paper, the system requirements needed to maintain the electricity demand of a commercial building have been compared for the 11 suggested fluids. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS with the required input for the ORC system derived from the previous study. The commercial building is located in Pensacola of Florida and is served by grid power. The building has been equipped with two geothermal heat pump units and a vertical closed loop system. The performance of the geothermal system has been monitored for 3 weeks. Monitoring data and available electricity bills of the building have been employed to calibrate the building and geothermal air conditioning system simulation. Simulation has been repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Rambod Rayegan ◽  
Yong X. Tao

The objective of this paper is to determine the optimal solar collector type and temperature of a building-scale power generation system employing solar organic Rankine cycle (ORC) engine for a geothermal air-conditioned net zero-energy building (NZEB) in a hot and humid climate. In the authors' previous work, 11 fluids have been suggested to be employed in solar ORCs that use low-temperature or medium-temperature solar collectors. In this paper, the system requirements needed to maintain the electricity demand of a commercial building have been compared for the 11 suggested fluids. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS with the required input for the ORC system derived from the previous study. The commercial building is located in Pensacola of Florida and is served by grid power. The building has been equipped with two geothermal heat pump units and a vertical closed loop system. The performance of the geothermal system has been monitored for 3 weeks. Monitoring data and available electricity bills of the building have been employed to calibrate the building and geothermal air conditioning system simulation. Simulation has been repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements.


2019 ◽  
Vol 191 ◽  
pp. 13-30 ◽  
Author(s):  
Muhammad Tauseef Nasir ◽  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Ebrahim Al-Hajri ◽  
Muhammad Bilal Kadri ◽  
...  

2018 ◽  
Vol 70 ◽  
pp. 01012
Author(s):  
Dominika Matuszewska ◽  
Marta Kuta ◽  
Jan Górski

This paper details the development of a systematic methodology to integrated life cycle assessment (LCA) with thermo-economic models and to thereby identify the optimal exploitation schemes of geothermal resources. Overall geothermal systems consist of a superstructure of geothermal exploitable resources, a superstructure of conversion technology and multiple demand profiles for Swiss city. In this paper, an enhanced geothermal system has been chosen as exploitable resources. The energy conversion technology used in modelling is an organic Rankine cycle, which can be used to supply heat and electricity. In the Swiss case four demand profiles periods are considered: summer, interseason, winter and extreme winter, the city Nyon serving for the example case study. The multi-objective optimization system, that uses an evolutionary algorithm, is employed to determine the optimal scheme for some of the prepared models, with exergy efficiency and environmental impact as objectives.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 831-842
Author(s):  
Chao Luo ◽  
Jun Zhao ◽  
Yongzhen Wang ◽  
Hongmei Yin ◽  
Qingsong An ◽  
...  

To match for the different temperature of the geothermal resource and strengthen the flexibility of organic Rankine cycle, a variable capacity power generation superstructure based on flash and organic Rankine cycle for geothermal energy was proposed. A combined flash-binary experimental prototype is newly established to investigate thermodynamic performance both on system and equipment in this paper. Pressured hot water is adopted as the extensive worldwide existed hydrothermal geothermal resource, eliminating the influence of the used heat transfer oil on evaporating process. The experimental results show that there is an optimal mass-flow rate of R245fa under the condition of different heat source temperature. Flash and binary power subsystem dominate the flash-binary power system, respectively, when the heat source temperature is 120? and 130?. The isotropic efficiency of modified compressor just between 0.2 and 0.25. The power output of per ton geofluid are 0.78 kWh/t and 1.31 kWh/t, respectively, when the heat source temperature are 120? and 130?. These results will predict the operation data of flash-binary power plant driven by the low-medium temperature geothermal water for construction in western of China.


2014 ◽  
Vol 886 ◽  
pp. 489-495
Author(s):  
Ze De Liang ◽  
Shu Jie Wang

The main geothermal resources in China are low or medium-temperature geothermal resources, these are more than 3000 hot springs, which of above 60 °C account for 24 percent of total, those are more than 720. In these hot springs bases for tourism and leisure and spa medical, the demand of electricity and air-conditioning is relatively large, so these is a very important practical significance to develop low or medium-temperature geothermal resources technology. If hot springs geothermal system uses lithium bromide-water azeotropic binary mixtures as working fluid, which not only reduces the heat loss of temperature difference, but also plays the advantages in thermodynamics and environmental aspects. Three systems of this article described all use water vapor as the working fluid, their characteristics are analyzed and compared, respectively. By analysis found that: when the demand is only for power generation and non-condensable gas content in hot springs geothermal water is not too high, the single-stage flash evaporation electrical system is more favorable; because of hot springs primarily for leisure travel and medical care function, and the demand for air conditioning and refrigeration is also large, so the combined system is more favorable.


Sign in / Sign up

Export Citation Format

Share Document