Study of Lithium Bromide-Water Binary Solution in the Application of Hot Springs Geothermal Energy

2014 ◽  
Vol 886 ◽  
pp. 489-495
Author(s):  
Ze De Liang ◽  
Shu Jie Wang

The main geothermal resources in China are low or medium-temperature geothermal resources, these are more than 3000 hot springs, which of above 60 °C account for 24 percent of total, those are more than 720. In these hot springs bases for tourism and leisure and spa medical, the demand of electricity and air-conditioning is relatively large, so these is a very important practical significance to develop low or medium-temperature geothermal resources technology. If hot springs geothermal system uses lithium bromide-water azeotropic binary mixtures as working fluid, which not only reduces the heat loss of temperature difference, but also plays the advantages in thermodynamics and environmental aspects. Three systems of this article described all use water vapor as the working fluid, their characteristics are analyzed and compared, respectively. By analysis found that: when the demand is only for power generation and non-condensable gas content in hot springs geothermal water is not too high, the single-stage flash evaporation electrical system is more favorable; because of hot springs primarily for leisure travel and medical care function, and the demand for air conditioning and refrigeration is also large, so the combined system is more favorable.

2021 ◽  
Vol 11 (5) ◽  
pp. 2411 ◽  
Author(s):  
Martina Gizzi ◽  
Glenda Taddia ◽  
Stefano Lo Russo

Geological and geophysical exploration campaigns have ascertained the coexistence of low to medium-temperature geothermal energy resources in the deepest regions of Italian sedimentary basins. As such, energy production based on the exploitation of available geothermal resources associated with disused deep oil and gas wells in Italian oilfields could represent a considerable source of renewable energy. This study used information available on Italian hydrocarbon wells and on-field temperatures to apply a simplified closed-loop coaxial Wellbore Heat Exchanger (WBHE) model to three different hydrocarbon wells located in different Italian oilfields (Villafortuna-Trecate, Val d’Agri field, Gela fields). From this study, the authors have highlighted the differences in the quantity of potentially extracted thermal energy from different analysed wells. Considering the maximum extracted working fluid temperature of 100 °C and imagining a cascading exploitation mode of the heat accumulated, for Villafortuna 1 WBHE was it possible to hypothesise a multi-variant and comprehensive use of the resource. This could be done using existing infrastructure, available technologies, and current knowledge.


Author(s):  
Rambod Rayegan ◽  
Yong X. Tao

The objective of this paper is to model and analyze the solar Organic Rankine Cycle (ORC) engine for a geothermal air-conditioned net zero-energy building (NZEB) in a hot and humid climate. In the authors’ previous work, 11 fluids have been suggested to be employed in solar ORCs that use low or medium temperature solar collectors. In this paper, the system requirements needed to maintain the electricity demand of a commercial building have been compared for the 11 suggested fluids. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS with the required input for the ORC system derived from the previous study. The commercial building is located in Pensacola of Florida and is served by grid power. The building has been equipped with two geothermal heat pump units and a vertical closed loop system. The performance of the geothermal system has been monitored for 3 weeks. Monitoring data and available electricity bills of the building have been employed to calibrate the building and geothermal air conditioning system simulation. Simulation has been repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements.


2021 ◽  
Vol 271 ◽  
pp. 01012
Author(s):  
Chenchen Li ◽  
Xiuwei Li ◽  
Yonghang Li

Absorption air-conditioning system is a green air-conditioning system. With binary solution as the working fluid, the system performance is better with lower cost. To further improve the efficiency, an electrosorption method is proposed to regenerate the absorbent solution. Its principle is similar to capacitive deionization. The system with LiBr-CaCl2 has been confirmed in the improvement of performance, while the cost-effectiveness wasn’t ideal to satisfy the need of some cases. To solve this problem, the system with MgCl2-CaCl2 is proposed to analyze the enhancement in the cost-effectiveness. The theoretical and experimental results verify the advantage in the cost-effectiveness compared to the system with LiBr-CaCl2. Although the performance of the system with MgCl2-CaCl2 is lower than the other mixed solution, the actual COP could reach 1.9, which is still better than the system with single absorbents. Meanwhile, the energy recovery characteristic could further enhance the advantage in the improvement of performance for the system with LiBr-CaCl2 and make up the weakness of the system with MgCl2-CaCl2 solution. The exploration of higher energy recovery efficiency will further improve the competitiveness of the system.


2018 ◽  
Vol 35 (2) ◽  
pp. 116-141 ◽  
Author(s):  
Erika Almirudis ◽  
Edgar R. Santoyo-Gutiérrez ◽  
Mirna Guevara ◽  
Francisco Paz-Moreno ◽  
Enrique Portugal

A promissory low-to-medium temperature geothermal system located in Sonora (Mexico) has been studied. In the present work, a detailed geochemical survey was carried out to understand the hydrogeochemical signatures of hot spring waters. A field work campaign was conducted for collecting water samples from twelve hot springs placed in four major zones (NW, NE, C, and S). The collected samples were analysed by chemical and isotopic methods for determining their chemical (major and trace elements) and isotopic (18O/16O and D/H) compositions. Using geochemometric analyses of the fluid composition and fractionation, depletion and enrichment processes exhibited by major and trace elements were analysed. Hydrogeochemical classification was used to indicate the presence of sodium-sulphate (Na-SO4) waters in the North (NW and NE) and South hydrothermal zones; whereas calcium-magnesium-bicarbonate (Ca-Mg-HCO3) waters were identified for the Central zone. Some hot spring waters located in the NE zone were also typified as sodium-bicarbonate (Na-HCO3). In relation to the isotopic signatures of 18O/16O and D/H, four water samples from NE and C zones lie near to the global meteoric water line; whereas the remaining eight samples showed a shift for both oxygen and deuterium isotopes. A mixing line with a small shift of δ18O was identified and used as a proxy to discriminate waters with different isotopic signatures. After applying a geochemometric outliers detection/rejection and an iterative ANOVA statistical test, the mean temperature inferred from the most reliable solute geothermometers was 149±40 °C, which suggests to be considered as the minimum value of the reservoir temperature. As most of the hot spring waters fall outside of the full equilibrium curve, the original reservoir conditions were corrected by using a mixing conductive model, which predicted a deep equilibrium temperature of 210±11 °C. As this temperature is considerably higher than the mean temperature inferred from the geothermometers, it was suggested as an optimistic maximum reservoir temperature of the Sonora geothermal system. Using 150 °C and 200 °C as rounded-off reservoir temperatures (or min-max estimates), geochemical equilibria modelling based on fluid-mineral stability diagrams was carried out. An equilibrium process among local hydrothermal waters and albite-potassium feldespar and muscovite-prehnite-laumontite mineral assemblages was found. These minerals were proposed as representative mineral assemblages of low-grade metamorphism, which seems to indicate that the geothermal fluid equilibria were probably reached within the intermediate to acidic volcanic rocks from the Tarahumara Formation.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 415
Author(s):  
Lucas Lima ◽  
Carlos Keutenedjian Mady

In this paper, an energy and exergy analysis is applied to the air dehumidification unit of a liquid desiccant system in an industrial gelatin conveyor dryer. The working fluid is a binary solution of lithium chloride (LiCl) in water. Dry air is used in order to decrease the amount of liquid in the gelatin. Therefore, the environmental air must have its absolute humidity reduced from about 12 g/kg to the project target, which is 5 g/kg. The process is a cycle using an absorption desiccant unit (LiCl in water), where the weak solution absorbs water vapor from the air. In the regenerator, condensation of the solution (desorption) from the moist air occurs. As a result, the steam consumption of the desorber and electrical power used for the vapor compression chiller (with ammonia, NH3, as working fluid) are the primary sources of cost for the factory. To improve the plant’s energy and exergy behaviors, the process is evaluated using a mathematical model of the system processes. In addition, we evaluate the substitution of the vapor compression chiller by an absorption unit (lithium bromide (LiBr) in water). The performance indicators of the compression vapor systems showed the best results. Even when using the condenser’s energy to pre-heat the solution, the installed system proved to be more effective.


2021 ◽  
Vol 9 ◽  
Author(s):  
Herong Zheng ◽  
Jun Luo ◽  
Ying Zhang ◽  
Jianyun Feng ◽  
Yan Zeng ◽  
...  

The southeast coastal areas in China have distributed lots of granite outcrops of different periods. Previous research has shown that granite geothermal reservoirs are also distributed under sedimentary basins in these areas, such as in Zhangzhou basin. Therefore, granites with fractures buried in deep can be used as a potential deep geothermal reservoir in these areas. In order to study geological conditions of the deep granite reservoir and discuss the genesis of the deep granite geothermal system, rock geochemistry and zircon U-Pb chronology from outcrop and parts of the drilling cores of granitic rocks have been analyzed, combined with the anatomy of the deep seismic data and electromagnetic detection data in selected area. Based on the results of geochemistry and zircon U-Pb chronology, most granites in this area are of Yanshanian periods. Based on the seismic data, the thickness of the overlying strata on granite in Huangshadong area of Huizhou City is up to 1.5 km. According to the regional geological survey, multi-stage joints are developed in the granite, and most of hot springs rise from intersection of fracture with different directions to the surface. The heat source in the study area mainly comes from the mantle carried up by the deep NNE-trending faults. There are a large number of thermal springs at the intersection of the surface and the NW-trending fault, and the NW-trending fault provides the drainage conditions for the upwelling of underground thermal springs. There is a huge amount of deep granite geothermal resources in the southeast coastal area. The analysis of deep granite geological conditions and genetic models can provide guidance for the evaluation of deep granite geothermal resources and the further optimization of favorable zones in these areas.


2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Agustinus Denny Unggul Raharjo

<p class="BodyA">South Manokwari Regency is a new autonomous region in West Papua Province with abundant natural resources. As a new autonomous region South Manokwari Regency will be experiencing significant population growth. Population growth along with development and modernization will give burden to electricity demand. Alternatively, electricity can be provided with geothermal resources in Momiwaren District. Based on survey conducted by the government through the Geology Resources Centre in 2009, the reservoir temperature of the geothermal sources is 84<sup>o</sup>C with non volcanic geothermal system. Thus, the geothermal resources in South Manokwari Regency could be developed into binary cycle electric generator.</p>


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 400 ◽  
Author(s):  
Zelin Nie ◽  
Feng Gao ◽  
Chao-Bo Yan

Reducing the energy consumption of the heating, ventilation, and air conditioning (HVAC) systems while ensuring users’ comfort is of both academic and practical significance. However, the-state-of-the-art of the optimization model of the HVAC system is that either the thermal dynamic model is simplified as a linear model, or the optimization model of the HVAC system is single-timescale, which leads to heavy computation burden. To balance the practicality and the overhead of computation, in this paper, a multi-timescale bilinear model of HVAC systems is proposed. To guarantee the consistency of models in different timescales, the fast timescale model is built first with a bilinear form, and then the slow timescale model is induced from the fast one, specifically, with a bilinear-like form. After a simplified replacement made for the bilinear-like part, this problem can be solved by a convexification method. Extensive numerical experiments have been conducted to validate the effectiveness of this model.


2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


Sign in / Sign up

Export Citation Format

Share Document