Numerical Modeling and Simulation of Condensation Heat Transfer in a Bundle of Transport Membrane Tubes for Waste Heat and Water Recovery

Author(s):  
Cheng-Xian Charlie Lin ◽  
Dexin Wang ◽  
Ainan Bao

In this paper, a numerical study has been carried out to investigate the heat and mass transfer with condensation in a transport membrane tube bundle, which is used for recovering both heat and water from combustion flue gas. The tube wall is made of a specially designed porous material that is able to extract condensate liquid from the flue gas. The flue gas investigated consists of one condensable water vapor (H2O) and three noncondensable gases (CO2, O2, and N2). A simplified multi-species transport model was developed for the heat and mass transfer of flue gas. The condensation-evaporation process was simulated as a two-step chemical reaction. The RNG two-equation turbulence model was used for the turbulent flow. The numerical study was conducted within ranges of Reynolds number of 1.0×103–7×104 based on hydraulic diameter of flue gas channel, and 6.4×100–3.3×102 based on inner diameter of the water tube. Flue gas inlet temperature is within the range of 333.2–360.9 K, while the water inlet temperature is within the range of 293.9–316.7 K. Numerical results were compared with experimental data obtained in a parallel effort. It has been found that the developed multi-species transport model was able to predict the flue gas heat and mass transfer in the tube bundle with fairly good accuracy. The heat and mass depletion levels decrease with the increase of the flue gas Reynolds numbers. A new Nusselt number correlation was developed for flue gas convection in the tube bundle. Detailed results about temperature, mass fraction, enthalpy, and skin fraction factors are also presented and discussed.

Author(s):  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

Low grade waste heat and water recovery using ceramic membrane, is an emerging technology which helps to increase the efficiency of boilers and gas or coal combustors in various industrial processes and conventional power plants. The tube wall of a Transport Membrane Condenser (TMC) based heat exchanger is made of a nano-porous material with high membrane selectivity which is able to extract condensate water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). In this work, a numerical study has been carried out to investigate the effects of transversal pitches of the TMC bundle tubes on the performance of a TMC based cross flow heat exchanger. A simplified multi-species transport model is used to investigate the heat and mass transfer characteristics of a condensing combustion flue gas in a crossflow transport membrane tube bundle. Various transversal (0.4”–0.6”) and longitudinal (0.4”–0.8”) pitches were used. The numerical results revealed that the effect of transversal pitches on the outlet parameters are more pronounced.


Author(s):  
Esmaiil Ghasemisahebi ◽  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

In this study tube bundle Transport Membrane Condenser (TMC) has been studied numerically. The tube walls of TMC based heat exchangers are made of a nano-porous material and has a high membrane selectivity which is able to extract condensate pure water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). Low grade waste heat and water recovery using ceramic membrane, based on separation mechanism, is a promising technology which helps to increase the efficiency of boilers and gas or coal combustors. The effects of inclination angles of tube bundle, different flue gas velocities, and the mass flow rate of water and gas flue have been studied numerically on heat transfer, pressure drop and condensation rates. To assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions, a single phase multi-component model is used. ANSYS-FLUENT is used to simulate the heat and mass transfer inside TMC heat exchangers. The condensation model and related source/sink terms are implemented in the computational setups using appropriate User Defined Functions (UDFs).


2015 ◽  
Vol 19 (5) ◽  
pp. 1805-1819 ◽  
Author(s):  
M’hand Oubella ◽  
M’barek Feddaoui ◽  
Rachid Mir

A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.


2008 ◽  
Vol 273-276 ◽  
pp. 119-125
Author(s):  
Nijaz Delalić ◽  
Ejub Džaferović ◽  
Ejub Ganić

Increase of the emission of CO2, which is mostly the result of the combusted fossil fuels into the atmosphere, exponentially increases. Through increased energy efficiency there is lower CO2 emission. There is a tendency to reduce exhaust gases temperatures down from their original value referred to as “acid dew point”, 115-160°C. A result is vapor condensation of wet flue in chimney. Condensation occurs when the surface temperature is below the dew point of the vapor-gas mixture. Therefore, Vapor-Liquid Equilibrium models are required in order to determine the dew point of the mixture. Wet flue gas is simulated with vapor-air mixture. A numerical model was presented to calculate the velocity and thermal field of turbulent vapor-air mixture flow trough a chimney. The momentum and temperature field were calculated via a finite-volume CFD code, using the k – e turbulence model. The validation of this calculation was conducted employing an experimental set for heat and mass transfer in vertical upward vapor-air mixture. Measurements were done using a stainless steel tube of 13.2 mm I.D. (internal diameter) and 70 I.D. lengths. Flow rates of steam and air were varied as the experimental parameters. The experiment involves two-phase, two-component, heat and mass transfer. Comparisons of wall temperature and condensate rate were made and the model was shown to give an acceptable results.


Author(s):  
Joonguen Park ◽  
Shinku Lee ◽  
Sunyoung Kim ◽  
Joongmyeon Bae

This paper discusses a numerical analysis of the heat and mass transfer characteristics in an autothermal methane reformer. Assuming local thermal equilibrium between the bulk gas and the surface of the catalyst, a one-medium approach for the porous medium analysis was incorporated. Also, the mass transfer between the bulk gas and the catalyst’s surface was neglected due to the relatively low gas velocity. For the catalytic surface reaction, the Langmuir–Hinshelwood model was incorporated in which methane (CH4) is reformed to hydrogen-rich gases by the autothermal reforming (ATR) reaction. Full combustion, steam reforming, water-gas shift, and direct steam reforming reactions were included in the chemical reaction model. Mass, momentum, energy, and species balance equations were simultaneously calculated with the chemical reactions for the multiphysics analysis. By varying the four operating conditions (inlet temperature, oxygen to carbon ratio (OCR), steam to carbon ratio, and gas hourly space velocity (GHSV)), the performance of the ATR reactor was estimated by the numerical calculations. The SR reaction rate was improved by an increased inlet temperature. The reforming efficiency and the fuel conversion reached their maximum values at an OCR of 0.7. When the GHSV was increased, the reforming efficiency increased but the large pressure drop may decrease the system efficiency. From these results, we can estimate the optimal operating conditions for the production of large amounts of hydrogen from methane.


Author(s):  
Kuifang Wan ◽  
Yunhan Xiao ◽  
Shijie Zhang

By adding an induced draft fan or exhaust compressor between flue gas condenser and stack to make the turbine expand to a pressure much lower than ambient pressure, this paper actually employed inverted Brayton cycle to solve stack temperature problems after water recovery from Humid Air Turbine (HAT) cycle exhaust gas and compare the effect of different discharging methods on the system’s performance. Comparing with the methods of gas discharged directly or recuperated, this scenario can obtain the highest electrical efficiency under certain pressure ratio and turbine inlet temperature. Due to the introduction of induced draft fan, in spite of one intercooler, there are twice intercoolings during the whole compression since the flue gas condenser is equivalent to an intercooler but without additional pressure loss. So the compression work decreases. In addition, the working pressure of humidifier and its outlet water temperature are lowered for certain total pressure ratio to recover more exhaust heat. These enhance the electrical efficiency altogether. Calculation results show that the electrical efficiency is about 49% when the pressure ratio of the induced draft fan is 1.3∼1.5 and 1.5 percentage points higher than that of HAT with exhaust gas recuperated. The specific works among different discharging methods are very closely. However, water recovery is some extent difficult for HAT employing inverted Brayton cycle.


Sign in / Sign up

Export Citation Format

Share Document