A Bi-Level Multi-Objective Robust Design Optimization Method With Multiple Robustness Index Capabilities

Author(s):  
Todd Letcher ◽  
M.-H. Herman Shen

A multi-objective robust optimization framework that incorporates a robustness index for each objective has been developed in a bi-level approach. The top level of the framework consists of the standard optimization problem formulation with the addition of a robustness constraint. The bottom level uses the Worst Case Sensitivity Region (WCSR) concept previously developed to solve single objective robust optimization problems. In this framework, a separate robustness index for each objective allows the designer to choose the importance of each objective. The method is demonstrated on a commonly studied two-bar truss structural optimization problem. The results of the problem demonstrate the effectiveness and usefulness of the multiple robustness index capabilities added to this framework. A multi-objective genetic algorithm, NSGA-II, is used in both levels of the framework.

Author(s):  
Tingting Xia ◽  
Mian Li

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.


Author(s):  
Tingting Xia ◽  
Mian Li

Abstract Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design problems. To find the robust Pareto fronts, multi-objective robust optimization methods with inner-outer optimization structures generally have high computational complexity, which is always an important issue to address. Based on the general experience, robust Pareto solutions usually lie somewhere near the nominal Pareto points. Starting from the obtained nominal Pareto points, the search process for robust solutions could be more efficient. In this paper, we propose a method that sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points. MOOPs are solved by the SARPF in two optimization stages. The deterministic optimization problem and the robustness metric optimization problem are solved in the first stage, and nominal Pareto solutions and the robust-most solutions can be found respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and the robust-most points. The proposed SARPF method can save a significant amount of computation time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values which can save computational efforts further. The global solvers, NSGA-II for the multi-objective case and genetic algorithm (GA) for the single-objective case, are used in corresponding optimization processes. Two examples with comparison to a previous method are presented for the applicability and efficiency demonstration.


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Brito Augusto

For Multi-Objective Robust Optimization Problem (MOROP), it is important to obtain design solutions that are both optimal and robust. To find these solutions, usually, the designer need to set a threshold of the variation of Performance Functions (PFs) before optimization, or add the effects of uncertainties on the original PFs to generate a new Pareto robust front. In this paper, we divide a MOROP into two Multi-Objective Optimization Problems (MOOPs). One is the original MOOP, another one is that we take the Robustness Functions (RFs), robust counterparts of the original PFs, as optimization objectives. After solving these two MOOPs separately, two sets of solutions come out, namely the Pareto Performance Solutions (PP) and the Pareto Robustness Solutions (PR). Make a further development on these two sets, we can get two types of solutions, namely the Pareto Robustness Solutions among the Pareto Performance Solutions (PR(PP)), and the Pareto Performance Solutions among the Pareto Robustness Solutions (PP(PR)). Further more, the intersection of PR(PP) and PP(PR) can represent the intersection of PR and PP well. Then the designer can choose good solutions by comparing the results of PR(PP) and PP(PR). Thanks to this method, we can find out the optimal and robust solutions without setting the threshold of the variation of PFs nor losing the initial Pareto front. Finally, an illustrative example highlights the contributions of the paper.


2005 ◽  
Vol 128 (4) ◽  
pp. 874-883 ◽  
Author(s):  
Mian Li ◽  
Shapour Azarm ◽  
Art Boyars

We present a deterministic non-gradient based approach that uses robustness measures in multi-objective optimization problems where uncontrollable parameter variations cause variation in the objective and constraint values. The approach is applicable for cases that have discontinuous objective and constraint functions with respect to uncontrollable parameters, and can be used for objective or feasibility robust optimization, or both together. In our approach, the known parameter tolerance region maps into sensitivity regions in the objective and constraint spaces. The robustness measures are indices calculated, using an optimizer, from the sizes of the acceptable objective and constraint variation regions and from worst-case estimates of the sensitivity regions’ sizes, resulting in an outer-inner structure. Two examples provide comparisons of the new approach with a similar published approach that is applicable only with continuous functions. Both approaches work well with continuous functions. For discontinuous functions the new approach gives solutions near the nominal Pareto front; the earlier approach does not.


2014 ◽  
Vol 5 (3) ◽  
pp. 44-70 ◽  
Author(s):  
Mohamed-Mahmoud Ould Sidi ◽  
Bénédicte Quilot-Turion ◽  
Abdeslam Kadrani ◽  
Michel Génard ◽  
Françoise Lescourret

A major difficulty in the use of metaheuristics (i.e. evolutionary and particle swarm algorithms) to deal with multi-objective optimization problems is the choice of a convenient point at which to stop computation. Indeed, it is difficult to find the best compromise between the stopping criterion and the algorithm performance. This paper addresses this issue using the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-Objective Particle Swarm Optimization with Crowding Distance (MOPSO-CD) for the model-based design of sustainable peach fruits. The optimization problem of interest contains three objectives: maximize fruit fresh mass, maximize fruit sugar content, and minimize the crack density on the fruit skin. This last objective targets a reduction in the use of fungicides and can thus enhance preservation of the environment and human health. Two versions of the NSGA-II and two of the MOPSO-CD were applied to tackle this difficult optimization problem: the original versions with a maximum number of generations used as stopping criterion and modified versions using the stopping criterion proposed by the authors of (Roudenko & Schoenauer, 2004). This second stopping criterion is based on the stabilization of the maximal crowding distance and aims to stop computation when many generations are performed without further improvement in the quality of the solutions. A benchmark consisting of four plant management scenarios has been used to compare the performances of the original versions (OV) and the modified versions (MV) of the NSGA-II and the MOPSO-CD. Twelve independent simulations were performed for each version and for each scenario, and a high number of generations were generated for the OV (e.g., 1500 for the NSGA-II and 200 for the MOPSO-CD). This paper compares the performances of the two versions of both algorithms using four standard metrics and statistical tests. For both algorithms, the MV obtained solutions similar in quality to those of the OV but after significantly fewer generations. The resulting reduction in computational time for the optimization step will provide opportunities for further studies on the sustainability of peach ideotypes.


Author(s):  
Mian Li ◽  
Shapour Azarm ◽  
Art Boyars

We present a deterministic, non-gradient based approach that uses robustness measures for robust optimization in multi-objective problems where uncontrollable parameters variations cause variation in the objective and constraint values. The approach is applicable for cases with discontinuous objective and constraint functions, and can be used for objective or feasibility robust optimization, or both together. In our approach, the parameter tolerance region maps into sensitivity regions in the objective and constraint spaces. The robustness measures are indices calculated, using an optimizer, from the sizes of the acceptable objective and constraint variation regions and from worst-case estimates of the sensitivity regions’ sizes, resulting in an outer-inner structure. Two examples provide comparisons of the new approach with a similar published approach that is applicable only with continuous functions. Both approaches work well with continuous functions. For discontinuous functions the new approach gives solutions near the nominal Pareto front; the earlier approach does not.


2018 ◽  
Vol 885 ◽  
pp. 131-144
Author(s):  
Philip Kolvenbach ◽  
Stefan Ulbrich ◽  
Martin Krech ◽  
Peter Groche

We consider the problem of finding the optimal shape of a force-sensing element which is integrated into a tubular structure. The goal is to make the sensor element sensitive to specific forces and insensitive to other forces. The problem is stated as a PDE-constrained minimization program with both nonconvex objective and nonconvex constraints. The optimization problem depends on uncertain parameters, because the manufacturing process of the structures underlies uncertainty, which causes unwanted deviations in the sensory properties. In order to maintain the desired properties of the sensor element even in the presence of uncertainty, we apply a robust optimization method to solve the uncertain program.The objective and constraint functions are continuous but not differentiable with respect to the uncertain parameters, so that existing methods for robust optimization cannot be applied. Therefore, we consider the nonsmooth robust counterpart formulated in terms of the worst-case functions, and show that subgradients can be computed efficiently. We solve the problem with a BFGS--SQP method for nonsmooth problems recently proposed by Curtis, Mitchell and Overton.


2020 ◽  
Vol 9 (4) ◽  
pp. 236
Author(s):  
Xiaolan Li ◽  
Bingbo Gao ◽  
Zhongke Bai ◽  
Yuchun Pan ◽  
Yunbing Gao

Complex geographical spatial sampling usually encounters various multi-objective optimization problems, for which effective multi-objective optimization algorithms are much needed to help advance the field. To improve the computational efficiency of the multi-objective optimization process, the archived multi-objective simulated annealing (AMOSA)-II method is proposed as an improved parallelized multi-objective optimization method for complex geographical spatial sampling. Based on the AMOSA method, multiple Markov chains are used to extend the traditional single Markov chain; multi-core parallelization technology is employed based on multi-Markov chains. The tabu-archive constraint is designed to avoid repeated searches for optimal solutions. Two cases were investigated: one with six typical traditional test problems, and the other for soil spatial sampling optimization applications. Six performance indices of the two cases were analyzed—computational time, convergence, purity, spacing, min-spacing and displacement. The results revealed that AMOSA-II performed better which was more effective in obtaining preferable optimal solutions compared with AMOSA and NSGA-II. AMOSA-II can be treated as a feasible means to apply in other complex geographical spatial sampling optimizations.


2011 ◽  
Vol 474-476 ◽  
pp. 1808-1812
Author(s):  
Bo Fu ◽  
Yi Jing ◽  
Xuan Fu ◽  
Tobias Hemsel

The multi-objective optimal design of a piezoelectric sandwich ultrasonic transducer is studied. The maximum vibration amplitude and the minimum electrical input power are considered as optimization objectives. Design variables involve continuous variables (dimensions of the transducer) and discrete variables (material types). Based on analytical models, the optimal design is formulated as a constrained multi-objective optimization problem. The optimization problem is then solved by using the elitist non-dominated sorting genetic algorithm (NSGA-II) and Pareto-optimal designs are obtained. The optimized results are analyzed and the preferred design is proposed. The optimization procedure presented in this contribution can be applied in multi-objective optimization problems of other piezoelectric transducers.


Author(s):  
W. Hu ◽  
M. Li ◽  
S. Azarm ◽  
S. Al Hashimi ◽  
A. Almansoori ◽  
...  

Many real-world engineering design optimization problems are multi-objective and have uncertainty in their parameters. For such problems it is useful to obtain design solutions that are both multi-objectively optimum and robust. A robust design is one whose objective and constraint function variations under uncertainty are within an acceptable range. While the literature reports on many techniques in robust optimization for single objective optimization problems, very few papers report on methods in robust optimization for multi-objective optimization problems. The Multi-Objective Robust Optimization (MORO) technique with interval uncertainty proposed in this paper is a significant improvement, with respect to computational effort, over a previously reported MORO technique. In the proposed technique, a master problem solves a relaxed optimization problem whose feasible domain is iteratively confined by constraint cuts determined by the solutions from a sub-problem. The proposed approach and the synergy between the master problem and sub-problem are demonstrated by three examples. The results obtained show a general agreement between the solutions from the proposed MORO and the previous MORO technique. Moreover, the number of function calls for obtaining solutions from the proposed technique is an order of magnitude less than that from the previous MORO technique.


Sign in / Sign up

Export Citation Format

Share Document