cold aisle containment
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 30 ◽  
pp. 101331 ◽  
Author(s):  
Wen-Xiao Chu ◽  
Rui Wang ◽  
Po-Hao Hsu ◽  
Chi-Chuan Wang

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Mingrui Zhang ◽  
Zhengwei Long ◽  
Qingsong An ◽  
Chao Sun ◽  
Hao Zhang ◽  
...  

This paper theoretically investigates the relationships among factors that affect the temperature rise of server racks and experimentally tests the influence of variable space contained arrangements on the thermal performance. To express the flow and heat transfer process of cold air in servers and analyze the critical factors affecting the temperature rise, a simplified mathematical model representing servers is developed using experimental results. An experiment is conducted within a modular data center in which cold air is supplied from a raised floor. The experiment employed a variable space of cold aisle containment and measured the resulting temperature rise, as well as pressure difference of racks and other parameters, in the simplified mathematical model. By comparing the experimental results and theoretical calculation, the theoretical model is proved to be reasonable and valid. The model predicts that the critical factors affecting the temperature rise of racks consist of static and dynamic pressure difference, total pressure of the fans, geometric structure, power consumption, resistance of doors, and opening area of servers. The result shows that the factor affected by the cold aisle contained system is the static pressure, while for the dynamic pressure difference, the contained architecture has a slight positive effect. Although the average temperature rise is quite decreased in the contained system, the static pressure distribution is nonuniform. A half-contained system which reduced contained space ratio to 50% is measured to cause a 22% increase of the static pressure difference, making a more uniform temperature distribution.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Sadegh Khalili ◽  
Husam Alissa ◽  
Kourosh Nemati ◽  
Mark Seymour ◽  
Robert Curtis ◽  
...  

There are various designs for segregating hot and cold air in data centers such as cold aisle containment (CAC), hot aisle containment (HAC), and chimney exhaust rack. These containment systems have different characteristics and impose various conditions on the information technology equipment (ITE). One common issue in HAC systems is a pressure build-up inside the HAC (known as backpressure). Backpressure also can be present in CAC systems in case of airflow imbalances. Hot air recirculation, limited cooling airflow rate in servers, and reversed flow through ITE with weaker fan systems (e.g., network switches) are some known consequences of backpressure. Currently, there is a lack of experimental data on the interdependency between overall performance of ITE and its internal design when backpressure is imposed on ITE. In this paper, three commercial 2-rack unit (RU) servers with different internal designs from various generations and performance levels are tested and analyzed under various environmental conditions. Smoke tests and thermal imaging are implemented to study the airflow patterns inside the tested equipment. In addition, the impact of hot air leakage into the servers through chassis perforations on the fan speed and the power consumption of the servers are studied. Furthermore, the cause of the discrepancy between measured inlet temperatures by the intelligent platform management interface (IPMI) and external sensors is investigated. It is found that arrangement of fans, segregation of space upstream and downstream of fans, leakage paths, the location of baseboard management controller (BMC) sensors, and the presence of backpressure can have a significant impact on ITE power and cooling efficiency.


Author(s):  
Sadegh Khalili ◽  
Husam Alissa ◽  
Kourosh Nemati ◽  
Mark Seymour ◽  
Robert Curtis ◽  
...  

There are various designs for segregating hot and cold air in data centers such as cold aisle containment (CAC), hot aisle containment (HAC), and chimney exhaust rack. These containment systems have different characteristics and impose various conditions on the information technology equipment (ITE). One common issue in HAC systems is the pressure buildup inside the HAC (known as backpressure). Backpressure also can be present in CAC systems in case of airflow imbalances. Hot air recirculation, limited cooling airflow rate in servers, and reversed flow through ITE with weaker fan systems (e.g. network switches) are some known consequences of backpressure. Currently there is a lack of experimental data on the interdependency between overall performance of ITE and its internal design when a backpressure is imposed on ITE. In this paper, three commercial 2-rack unit (RU) servers with different internal designs from various generations and performance levels are tested and analyzed under various environmental conditions. Smoke tests and thermal imaging are implemented to study the airflow patterns inside the tested equipment. In addition, the impact leak of hot air into ITE on the fan speed and the power consumption of ITE is studied. Furthermore, the cause of the discrepancy between measured inlet temperatures by internal intelligent platform management interface (IPMI) and external sensors is investigated. It is found that arrangement of fans, segregation of space upstream and downstream of fans, leakage paths, location of sensors of baseboard management controller (BMC) and presence of backpressure can have a significant impact on ITE power and cooling efficiency.


Sign in / Sign up

Export Citation Format

Share Document