Computational Analysis of Mixing in a Gas Turbine Combustor

Author(s):  
Alka Gupta ◽  
Mohamed Saeed Ibrahim ◽  
R. S. Amano

This paper presents the computational analysis of the dilution process involved in gas turbines order to cool the combustion gases to the desired temperature before it enters the turbine. Here, it should be noted that in order to focus only on the dilution process, non-reacting flow conditions were simulated and the complete system was reduced to mixing of a primary (hot) stream and dilution (cold) stream of air. Four different schemes were investigated based on the layout of the dilution holes and use of a blunt body. A complete three dimensional analysis was carried out for each case in order to investigate its effectiveness to produce a more uniform temperature conditions at the exit of the combustor, so as to reduce the detrimental effect these temperature non-uniformities have on the turbine blades. For comparison of the proposed schemes, a parameter is defined in terms of the temperatures of the dilution and primary flow streams at the inlet and the exit plane, called the mixture fraction. Based on this parameter, it was found that the staggered dilution holes with the blunt body has the mixture fraction closest to the equilibrium mixture fraction (0.4), which implies that this scheme with the mixture fraction of 0.36, resulted in best mixing and produced the most uniform temperature distribution at the exit amongst the four proposed schemes.

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Osama M. Selim ◽  
Tarek Elgammal ◽  
Ryoichi S. Amano

Abstract The importance of gas turbine blades is to convert the thermal energy into shaft work output, which makes the turbine blades as one of the critical components of the gas turbines. Besides the mechanical stresses caused by the centrifugal force and the fluid forces, the thermal stresses arise because of the temperature gradient within the blade materials. This paper aims to have a uniform circumferential temperature field at the combustor exit, consequently reducing the thermal stresses caused by the non-uniform temperature distribution along the turbine blade. The validation of the simulation results with the experiments showed an acceptable agreement with the available experimental data. The agreement includes the uniformity factor and the normalized mixture fraction at two different flowrates. Furthermore, another location of the guide vanes, external guide vanes, was experimentally and numerically tested. The results show that the external guide vanes with a 30 deg orientation gave the most uniform temperature flow for the two different flowrates. Compared with the internal guide vanes with the same orientation, the external guide vanes gave a 7.5% higher uniformity factor and a 2% lower pressure drop. The main reason for this result is that the external guide vanes direct the cold stream to penetrate the dilution zone with an angle enhance the swirling effect which are the main factors for excellent mixing, while the pressure drop is lower as the external guide vanes are facing the lower flowrate which is the secondary stream. Another advantage of the external guide vanes over the internal ones is that they are subjected to less thermal stresses as they are facing the cold flow. Furthermore, the external guide vanes are reachable and easy to maintain compared with the internal guide vanes.


Author(s):  
Axel Widenhorn ◽  
Berthold Noll ◽  
Manfred Aigner

In this contribution the three-dimensional reacting turbulent flow field of a swirl-stabilized gas turbine model combustor is analyzed numerically. The investigated partially premixed and lifted CH4/air flame has a thermal power load of Pth = 35kW and a global equivalence ratio of φ = 0.65. To study the reacting flow field the Scale Adaptive Simulation (SAS) turbulence model in combination with the Eddy Dissipation/Finite Rate Chemistry combustion model was applied. The simulations were performed using the commercial CFD software package ANSYS CFX-11.0. The numerically achieved time-averaged values of the velocity components and their appropriate turbulent fluctuations (RMS) are in very good agreement with the experimental values (LDA). The same excellent results were found for other flow quantities like temperature and mixture fraction. Here, the corresponding time-averaged and the appropriate RMS profiles are compared to Raman measurements. Furthermore the instantaneous flow features are discussed. In accordance with the experiment the numerical simulation evidences the existence of a precessing vortex core (PVC). The PVC rotates with a frequency of 1596Hz. Moreover it is shown that in the upper part of the combustion chamber a tornado-like vortical structure is established.


Author(s):  
Sven Gunnar Sundkvist ◽  
Michael Andersson ◽  
Bogdan Gherman ◽  
Andreas Sveningsson ◽  
Damian Vogt

This paper describes a way of co-operation between industries, universities and government that has proven to be very fruitful. The Swedish Gas Turbine Centre (GTC) is constituted as a research consortium between technical universities and gas turbine industry. The overall goal of the centre, that was founded in 1996 on a governmental initiative, is to build up a basis of knowledge at Swedish universities to support the industrial development in Sweden of gas turbines of the future with expected requirements on low emissions, high efficiencies, high availability, and low costs. Since the start the research has had a focus on high temperature components of gas turbines (combustion chamber and turbine). This is also reflected in the on-going development phase where the research program consists of four project areas: cooling technology, combustion technology, aeroelasticity, and life time prediction of hot components. The projects are aiming at developing design tools and calculation and verification methods within these fields. A total of eleven research students (among them one industrial PhD student) are active in the centre at present. Numerical analysis as well as experimental verification in test rigs are included. The program has so far produced eleven Licentiate of Engineering and five PhD. On-going activities and recent results of the research in the four research areas are presented: • A new test rig for investigation of time-dependent pressures of three-dimensional features on a vibrating turbine blade at realistic Mach, Reynolds and Strouhal numbers and first experimental results. • Results of numerical simulations of heat loads on turbine blades and vanes, especially platform cooling. • First results of numerical investigations of combustion and thermo-acoustic instabilities in gas turbine chambers. • Experimental investigation of crack propagation in gas turbine materials using the scanning electron microscope (SEM).


2021 ◽  
pp. 1-16
Author(s):  
Sayan Ghosh ◽  
Govinda Anantha Padmanabha ◽  
Cheng Peng ◽  
Valeria Andreoli ◽  
Steven Atkinson ◽  
...  

Abstract One of the critical components in Industrial Gas Turbines (IGT) is the turbine blade. Design of turbine blades needs to consider multiple aspects like aerodynamic efficiency, durability, safety and manufacturing, which make the design process sequential and iterative. The sequential nature of these iterations forces a long design cycle time, ranging from several months to years. Due to the reactionary nature of these iterations, little effort has been made to accumulate data in a manner that allows for deep exploration and understanding of the total design space. This is exemplified in the process of designing the individual components of the IGT resulting in a potential unrealized efficiency. To overcome the aforementioned challenges, we demonstrate a probabilistic inverse design machine learning framework, namely PMI (PMI), to carry out an explicit inverse design. PMI calculates the design explicitly without costly iteration and overcomes the challenges associated with ill-posed inverse problems. In this work the framework will be demonstrated on inverse aerodynamic design of three-dimensional turbine blades.


Author(s):  
Ajay K. Agrawal ◽  
Tah-Teh Yang

A numerical model for turbulent reacting flow is described and applied for predictions in an industrial gas turbine combustor operating on low-Btu coal gas. The model, based on fast-reaction limit, used Favre averaged conservation equations with the standard k-ε model of turbulence. Effects of turbulent fluctuations on chemistry are described statistically in terms of the mean, variance and probability density function (assumed to be β-distribution) of the mixture fraction. Two types of geometric approximations, namely axisymmetric and three-dimensional, were used to model the combustor. Computations were performed with (a) no swirl (b) weak swirl and (c) strong swirl at the fuel and primary air inlets. Essentially, the same bulk mean temperature distributions were obtained for axisymmetric and three-dimensional calculations while the computed pattern factors and the liner wall temperatures for the two differed significantly. Complete combustion was predicted with strong swirl, a result supported by the available test data. The maximum liner wall temperature predicted for three-dimensional calculations compared favorably with the experimental data while the predicted maximum exhaust gas temperature differed by ≈120 K. The difference was attributed to measurement uncertainties, model assumptions and lack of accurate data at the inlets. The maximum flame temperature was below 1,850 K indicating that thermal NOx may be insignificant.


Author(s):  
Cong-Truong Dinh ◽  
Tai-Duy Vu ◽  
Tan-Hung Dinh ◽  
Phi-Minh Nguyen

Abstract In gas turbines, the turbine blades are always working in the highly temperature overhead the permissible metal temperatures. To safe operation, the turbine blades are needed to cool. Many researchs in turbine cooling technology can be categorized as internal and external cooling. This paper presents an investigation of cutted-root rib design, where a part of rib was truncated below to create an extra-passage in the root rib applied in the internal cooling turbine blades of jet engine using three-dimensional Reynolds-averaged Navier-Stokes with the SST model. The object of this investigation is to reduce the vortex occurring near the rib for improving the performance of heat transfer, such as the Nusselt number and thermal performance factor. To investigate the heat transfer performance and fluid flow characteristics of internal cooling turbine blades, a parametric study of the cutted-root rib was performed using various geometric parameters related to the height and shapes of the extra-passage. The cutted-root rib geometry is designed in ANSYS DesignModeler, and then meshed by using ICEM-CFD, analysed and post-processed using Ansys-CFX. The numerical results showed that all heat transfer parameter with the cutted-root rib design was greater than the original case without cutted-root rib.


2020 ◽  
Author(s):  
Ky-Quang Pham ◽  
Quang-Hai Nguyen ◽  
Tai-Duy Vu ◽  
Cong-Truong Dinh

Abstract Gas turbine engine has been widely applied to many heavy industries, such as marine propulsion and aerospace fields. Increasing turbine inlet temperature is one of the major ways to improve the thermal efficiency of gas turbines. Internal cooling for gas turbine cooling system is one of the most commonly used approaches to reduce the temperature of blades by casting various kinds of ribs in serpentine passages to enhance the heat transfer between the coolant and hot surface of gas turbine blades. This paper presents an investigation of boot-shaped rib design to increase the heat transfer performances in the internal cooling turbine blades for gas turbine engines. By varying the design parameter configuration, the airflow is taken with higher momentum, and the minor vortex being at the front rib is relatively removed. The object of this investigation is increasing the reattachment airflow to wall and reducing the vortex occurring near the rib for improving the performances of heat transfer using three-dimensional Reynolds-averaged Navier-Stokes with the SST model. A parametric study of the boot-shaped rib design was performed using various geometric parameters related to the heel-angle, toe-angle, slope-height and rib-width to find their effect on the Nusselt number, temperature on the ribbed wall, friction factor ratio of the channel and thermal performance factor. The numerical results showed that the heat transfer performances are significantly increased with the heel-angle, toe-angle, slope-height, while that remained relatively constant with the rib-width.


Author(s):  
Ay Su ◽  
Ze-Chern Lee ◽  
Wu-Chi Ho

A CFD solver CFX is used to analyze the complex behavior of turbulent reacting flow inside the furnace. The flow characteristics for various combustor geometries, fuel/air ratios, and injection velocities, and swirl levels are investigated. Starting with a cylindrical furnace fired with gaseous fuel from a concentric tube burner (both with and without swirl), the mixture-fraction is predicted using the k-ε and RSM turbulence models. The discrepancies between the predictions and measurements are most significant in the flame core of upstream regions. It may stem from inappropriateness of the assumed inlet conditions and the combustion model. However, the calculated results are still qualitatively acceptable. After the validation work of the numerical model, a rectangular furnace with four wall-fired swirling combustors is employed to investigate the effect of neighbouring burners and geometry on combustion characteristics. The central recirculation zone which appeared in the isothermal flowfield vanished in the combustion case. It may be attributed to the fact that the hot gas suddenly expands outward and destroys the recirculation mechanism. Thus, the central flame could not hold. In addition, the four corner flames are stretching against the wall and their shapes are similar to a “cam” profile. The results are intended to assist in the development and validation of a numerical model for predicting furnace flows in wall-fired power plants.


1992 ◽  
Vol 114 (2) ◽  
pp. 250-257 ◽  
Author(s):  
W. Tabakoff ◽  
M. Metwally

Gas turbine engines operating in dusty environments are exposed to erosion and performance deterioration. In order to improve the erosion resistance, nickel and cobalt superalloy blades and vanes are widely used in the hot section of gas turbines. Protective coatings have been used to enhance superalloy resistance to hot erosion. An investigation has been conducted to study coal ash particle dynamics and resulting blade erosion for both uncoated and coated blades of a two-stage axial flow gas turbine. A quasi-three-dimensional flow solution is obtained for each blade row for accurate computation of particle trajectories. The change in particle momentum due to collision with the turbine blades and casings is modeled using restitution parameters derived from three-component laser-Doppler velocimeter measurements. The erosion models for both blade superalloy and coatings are derived based on the erosion data obtained by testing the blade superalloy and coatings in a high-temperature erosion wind tunnel. The results show both the three-dimensional particle trajectories and the resulting blade impact locations for both uncoated and coated blade surfaces. In addition are shown the distribution of the erosion rate, impact frequency, impact velocity, and impact angle for the superalloy and the coating. The results indicate significant effects of the coating, especially on blade erosion and material deterioration.


2016 ◽  
Vol 136 (3) ◽  
pp. 318-324
Author(s):  
Naoya Miyamoto ◽  
Makoto Koizumi ◽  
Hiroshi Miyao ◽  
Takayuki Kobayashi ◽  
Kojiro Aoki

Sign in / Sign up

Export Citation Format

Share Document