A Numerical Model of Mechanics of Osteoarthritis in Human Knee Joint

Author(s):  
Yaghoub Dabiri ◽  
LePing Li

Articular cartilage is composed of water entrapped in a solid matrix formed by proteoglycans and collagen fibers. Therefore, the mechanical behavior of this tissue is determined by all of these three components. In addition, the properties of articular cartilage vary along the depth and by location. In the human knee joint, the three dimensional geometry as well as the contact between the cartilaginous tissues plays essential roles in the joint mechanics. On the other hand, initiation and progression of osteoarthritis (OA) could be partly caused by contact loads. Consequently, the fibrillar and non-fibrillar matrices, the three dimensional geometry and the contact between the tissues should be considered as essential parameters in the study of the mechanics of osteoarthritis. However, previous studies on OA mechanics were mostly limited to explants geometries [1]. Also, the contact mechanics associated with the fluid pressure have not been considered in the previous OA models. In a recent knee model, fluid was considered in femoral cartilage but not in the menisci [2]. Additionally, the depth-dependent mechanical properties were not included in that model.

Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
George Stefanoudakis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
...  

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load bearing structures is of help when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament in the knee connects the femur to the tibia and is often torn during a sudden twisting motion, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint in typical everyday activities and evaluate the differences in its response for three different states, intact, injured and reconstructed knee. Three equivalent finite element models were developed. For the reconstructed model a novel repair device developed and patented by the authors was employed. For the verification of the developed models, static load cases presented in a previous modeling work were used. Mechanical stresses calculated for the load cases studied, were very close to results presented in previous experimentally verified work, in both load distribution and maximum calculated load values.


2002 ◽  
Vol 14 (04) ◽  
pp. 171-174
Author(s):  
XISHI WANG ◽  
LI-QUN ZHANG

In this study, the OptoTrak system was employed to collect the articulating surface measurements of the human knee for the femur, tibia and patella in three experimented specimens. Furthermore, a rigorous mathematical reconstruction procedure that estimates reconstruction error was completed by employed the relative analysis tools. The results show, the measurements for each session were able to reconstruct the three-dimensional calibration to a precision of 0.02mm. On the other word, the OptoTrak can be used to obtain the precise measurements of analytical surface of the human knee joint.


2020 ◽  
pp. 1407-1418
Author(s):  
Enas Yahya Abdullah ◽  
Hala Khdhie

In this paper, the wear in layers of articular cartilage was calculated, parameters effective on elastic deformation were studied in normal and diseased knee joints,   and relations between elastic deformation and squeeze film characteristics under lubrication condition  were discussed with using a mathematical model. Conferring to the results obtained, elastic deformation effects on the performance of synovial human knee joint were analyzed from medical and dynamics perspectives. Relationships between elastic deformation and wear of layers were also discussed.


Cartilage ◽  
2010 ◽  
Vol 2 (3) ◽  
pp. 246-253 ◽  
Author(s):  
Erna Kaleva ◽  
Tuomas Virén ◽  
Simo Saarakkala ◽  
Janne Sahlman ◽  
Joonas Sirola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document