Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage—A 3D finite element study of stresses and strains in human knee joint

2013 ◽  
Vol 46 (6) ◽  
pp. 1184-1192 ◽  
Author(s):  
K S Halonen ◽  
M E Mononen ◽  
J S Jurvelin ◽  
J Töyräs ◽  
R K Korhonen
2014 ◽  
Vol 601 ◽  
pp. 147-150 ◽  
Author(s):  
Daniela Tarniţă ◽  
Marius Catana ◽  
Dan Nicolae Tarnita

The paper presents a complex three-dimensional model of the human knee joint, containing bones, ligaments, menisci, tibial and femoral cartilages. To investigate the role of the articular cartilage in the developing of the osteoarthritis, to analyze and simulate the biomechanical behavior of the human knee joint, a finite element analysis was performed. The non-linearities are due to the presence of the contact elements modeled between components surfaces and to the nonlinear properties of the cartilage, applying a load of 800 N and 1500 N, for 0o in flexion. The results show that misalignment (valgus variation) could damage the articular cartilage because they increase the stress magnitude, that progressively produce articular cartilage damage and it enhances the osteoarthritis phenomenon due to mechanical factors. The displacements and the Von Mises stress distributions on the cartilage and menisci for the virtual prototype, considering an angle of 10 degrees for valgus, are presented. The obtained values are comparable with the values obtained by other authors.


2010 ◽  
Vol 10 (02) ◽  
pp. 225-236
Author(s):  
XIONGQI PENG ◽  
GENG LIU ◽  
ZAOYANG GUO

Articular cartilage is a vital component of human knee joints by providing a low-friction and wear-resistant surface in knee joints and distributing stresses to tibia. The degeneration or damage of articular cartilage will incur acute pain on the human knee joints. Hence, to understand the mechanism of normal and pathological functions of articular cartilage, it is very important to investigate the contact mechanics of the human knee joints. Experimental research has difficulties in reproducing the physiological conditions of daily activities and measuring the key factors such as contact-stress distributions inside knee joint without violating the physiological environment. On the other hand, numerical approaches such as finite element (FE) analysis provide a powerful tool in the biomechanics study of the human knee joint. This article presents a two-dimensional (2D) FE model of the human knee joints that includes the femur, tibia, patella, quadriceps, patellar tendon, and cartilages. The model is analyzed with dynamic loadings to study stress distribution in the tibia and contact area during contact with or without articular cartilage. The results obtained in this article are very helpful to find the pathological mechanism of knee joint degeneration or damage, and thus guide the therapy of knee illness and artificial joint replacement.


Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
George Stefanoudakis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
...  

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load bearing structures is of help when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament in the knee connects the femur to the tibia and is often torn during a sudden twisting motion, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint in typical everyday activities and evaluate the differences in its response for three different states, intact, injured and reconstructed knee. Three equivalent finite element models were developed. For the reconstructed model a novel repair device developed and patented by the authors was employed. For the verification of the developed models, static load cases presented in a previous modeling work were used. Mechanical stresses calculated for the load cases studied, were very close to results presented in previous experimentally verified work, in both load distribution and maximum calculated load values.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ting Jiang ◽  
Rui Ying Wu ◽  
Jian Kai Wang ◽  
Hong Hong Wang ◽  
Guo Hua Tang

Sign in / Sign up

Export Citation Format

Share Document