Low Energy Building Designs for Extreme Weather Conditions in Central Asia

Author(s):  
Serik Tokbolat ◽  
Raikhan Tokpatayeva ◽  
Sarim Naji Al-Zubaidy

Buildings account for nearly 40% of the end-use energy consumption and carbon emissions globally. These buildings, once built, are bound to be utilized for several decades if not longer. The building sector therefore holds a significant responsibility for implementing strategies to increase energy efficiency and reduce carbon emissions and thus contribute to global efforts directed toward mitigating the adverse effects of climate change. This paper presents an oversight of effective low-energy building design strategies for the extreme weather conditions in Kazakhstan (Astana), with temperature ranging between −35 and +40 C. Passive design features coupled with integration of renewable energy technologies have been identified for the next generation of buildings in Astana. The specific nature of the work is intentional, it is a continuing attempt to generate relevant know how that has direct relevancy to Astana’s system approach to energy conversation to meet its extreme winters.

Author(s):  
Gerhard Dell ◽  
Christiane Egger

The buildings sector accounts for 40% of European energy requirements. Two thirds of the energy used in European buildings is consumed by private households, and their consumption is growing every year as rising living standards lead to an increased use of air conditioning and heating systems. Research shows that more than one-fifth of the present energy consumption and up to 30–45 million tonnes of CO2 per year could be saved by 2010 by applying more ambitious standards both to new and refurbished buildings–these savings would represent a considerable contribution to meeting the European Kyoto targets (European Council, 2002). Without comprehensive measures, energy consumption and CO2 emissions from the building sector will continue to grow. Sustainable energy strategies for buildings will therefore increase in importance. Even today, so-called ‘zero emission buildings’ can be realized with existing planning approaches and technologies. Such buildings do not need an external energy input (for example from oil, gas or supplied electricity) other than solar energy. This is achieved by a combination of a high-level of energy efficiency and renewable energy technologies. This chapter focuses on buildings in the housing and service sectors, presents new building design strategies, technologies, and building components as well as the new legal framework set by the European Buildings Directive. It also discusses the question of raising awareness, and presents some thoughts on how changing life patterns may impact the buildings of the future. Residential buildings mainly need energy for space heating; with present building standards, space heating represents about 70% of the overall energy demand of existing buildings. In many European countries there are substantial efforts to increase energy efficiency—nevertheless, not all the potential for energy savings has been realized by far, and oil is still a major energy source for heating. In recent years, heat demand for new buildings was reduced significantly by technical measures. However, the number of low energy or passive buildings in Europe is still very limited, despite the fact that they can be constructed at acceptable costs.


2012 ◽  
Vol 253-255 ◽  
pp. 658-669 ◽  
Author(s):  
Serik Tokbolat ◽  
Raikhan Tokpatayeva ◽  
Sarim Al-Zubaidy

There is a distinct lack of building design literature specific to the Central Asian region. This perhaps, could be one of reasons for the only slight improvement of new building designs and construction. One does observe the highly glazed buildings are a particularly popular feature here in Astana, as like anywhere else in the world. However, excessively glazed surfaces combined with the weather extremes leads to adverse internal conditions and skyrocketing energy bills. The work presented in this paper is a part of continuing efforts to identify analyze and promote the design of ‘low energy, green and sustainable buildings with special reference to the Kazakhstan locality. In the present context, low energy buildings’ refers to buildings inherently low energy consuming by careful passive design, utilizing intelligent building technologies to automate building services and minimize wastage of energy and by incorporation of renewable technologies for its energy supply. Demonstration of improved environmental conditions and impact on energy savings will be outlined through a cause study incorporating application of passive design approach and detailed computational fluid dynamics (CFD) analysis for an existing building complex. The results indicated that there is a considerable influence of passive design and orientation on energy efficiency, wind comfort and safety.


2013 ◽  
Vol 5 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Vytautas Martinaitis ◽  
Vygantas Žėkas

The most progress in the area of the sustainable building policy and its implementation has been achieved in certain regions by the Building Certification System regulations such as Passivhaus (Germany) and LEED (U.S). These solutions are similar to the more widely discussed and already applied concepts: the Integrated Whole Building Design (IWBD) and Building Information Modeling (BIM). Although it may sound trivial, it is vital to acknowledge and understand that a building is an integral component of the land lot. In the stage of development of a building concept, it usually lacks a versatile and professional assessment of available resources, especially those of renewable energy. It is suggested at the beginning of the IWBD concept to conduct such assessment on the resources available and more specifically focusing on renewable energy. The assessment should also meet the expectations of the building’s owner to use effectively the potential of all possible solutions. Thus a certificate is drawn up, defining all the resources available for the particular lot. The structure of the certificate data is orientated towards the possibility of designing modern renewable energy technologies, according to their performance under changing weather conditions during the year. Such assessment certificates contribute to shaping the concept of the building and allow achieving the highest level of its sustainability. Article in Lithuanian. Santrauka Didžiausios pažangos įgyvendinant tvarių pastatų politiką pasiekusios šalys, regionai jau parengę ir praktiškai taiko tam skirtus reglamentus, pastatų sertifikavimo sistemas (Pasive Haus – Vokietija, LEED – JAV ir kt.). Juos atitinka vis plačiau diskutuojamos ir jau taikomos viso pastato integruoto projektavimo (VPIP/IWBD, Integrated Whole Building Design – angl.) ir pastato informacinio modeliavimo (PIM/BIM, Building Information Modeling – angl.) koncepcijos. Nors tai skamba trivialiai, bet pastatas yra neatsiejamas nuo sklypo: t. y. stokoja savalaikio, įvairiapusiško ir profesionalaus sklype disponuojamų išteklių, ypač atsinaujinančios energijos, įvertinimo. Pirmame VPIP etape, kuris baigiasi projekto koncepcijos sukūrimu, siūloma atlikti sklypo disponuojamų išteklių, visų pirma atsinaujinančios energijos, pastato savininko lūkesčius atitinkančių jų naudojimo galimybių įvertinimą. Tam parengiamas sklypo disponuojamų išteklių sertifikatas. Jo duomenų struktūra orientuota į galimybę projektuoti šiuolaikines atsinaujinančios energijos technologijas, atsižvelgiant į jų veikimą per metus besikeičiant klimato sąlygoms. Tokie vertinimai padėtų kuriant pastato koncepciją ir leistų pasiekti aukštesnio lygio darnos. Po kelių metų su taip projektuojamais pastatais galima prieiti prie kitokio pastato koncepcijos, sprendinių, išvaizdos ir vertės supratimo.


2014 ◽  
Vol 899 ◽  
pp. 440-445
Author(s):  
Sára Hrabovszky-Horváth

Changes in climate have various impacts on the built environment: e.g. the building design and the materials together with the operation and the maintenance. Therefore, it is extremely important to account for the future weather conditions during both the design of new buildings and the renovation of existing buildings. According to the Hungarian meteorological researches as a consequence of the global warming the climate of Hungary is going to become warmer and drier as well as the number and the intensity of the extreme weather events is expected to grow. One of the main directions of actions in the Climate Change Strategy is the adaptation to the changing circumstances, the improvement of the adaptive capacity of the built environment. In this study, the prefabricated reinforced concrete large-panel residential buildings are analysed: a bottom-up methodology was developed based on typological approach to assess the vulnerability of the ‘panel buildings’ to climate change by analysing the extreme weather events. After assessing the sensitivity and the adaptive capacity of the determined building types, their vulnerability to the increased number of windstorms and extreme rainfalls was estimated and the influence of their refurbishment was analysed.


2020 ◽  
Vol 8 (6) ◽  
pp. 3656-3661

Wireless communication in building application and design currently act as two separate platforms of communication for inhabitants. Users utilize information sent and received through wireless technology unaffected by the space they are residing. As a means of data exchange and transfer objective information this method of communication serves its expected purpose. On the contrary in the case of personal communication, the surrounding space becomes an insignificant contributor. Also in a situation of wireless system failure the built space does not act as back-up support to all running functions. This paper questions the extensive reviews and is based on focus expert interviews (Qualitative methods) on building designs with specific objectives i.e. a) To allow building design to act as a backup for effective communication in case of wireless system failure b) To assess the building design for enhanced communication. For the purpose of data collection ten expert Architects were called for a focused group interview. The themes and sub themes from the focused group interview were assessed through thematic analysis and the results are discussed below in section VI.


Author(s):  
Kim Bawden ◽  
Valentina Prado ◽  
Thomas P. Seager ◽  
Abigail R. Mechtenberg ◽  
Erin Bennett

The concept of energy conservation is now deeply entrenched in building design and operation. Typical approaches take a first law perspective that seeks to reduce energy quantity losses at individual system components. While this conventional approach often results in energy savings, it is not sufficient to realize ultra-low energy communities. However, the concept of energy quality, which derives from the second law of thermodynamics, is capable of more holistic, systems analyses, revealing opportunities for efficiency improvement, energy quality matching, or energy cascading that may otherwise go unnoticed. This paper makes two cross-comparisons of analytic perspectives for understanding energy consumption in different types of Army communities. The first is a comparison of first and second law perspectives of energy improvement technologies at a permanent Army base in the United States. The second is a comparison of electricity generation efficiencies at forward operating bases under conditions that do not consider supply chain fuel consumption and those that do. Considerable differences exist in the conclusions and recommendations that are generated by the different perspectives in each case. In the permanent community, second law analysis is useful for demonstrating the value of combined heat and power at an existing heating district. In the second case, the consumption of fuel in long convoys suggests that delivery of energy equipment (such as solar panels) is in itself an important source of fuel consumption that should be considered in optimization of solar energy technologies.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Serik Tokbolat ◽  
Raikhan Tokpatayeva ◽  
Sarim Naji Al-Zubaidy

Buildings account for nearly 40% of the end-use energy consumption and carbon emissions globally. These buildings, once built, are bound to be utilized for several decades if not longer. The building sector, therefore, holds a significant responsibility for implementing strategies to increase energy efficiency and reduce carbon emissions and thus contribute to global efforts directed toward mitigating the adverse effects of climate change. This paper presents an overview of the effect of building orientation on energy consumption in buildings for the extreme cold weather conditions in Astana (capital of the Republic of Kazakhstan), with temperature ranging between −35 and +40 °C. Passive design features coupled with integration of renewable energy technologies have been identified for the next generation of buildings in Astana. The specific nature of the work is intentional; it is a continuing attempt to generate relevant know how that has direct relevancy to Astana's system approach to energy conservation to meet its extreme winters. Simulations allowed assessing how changing certain input variables can impact the overall energy consumption of the considered object. The simulation results have shown that orientation of a building can significantly affect the energy usage rate. In fact, the building rotation has justified the initial assumptions that building orientation affects its energy consumption. The South and North facing directions are found to be the most energy efficient (initial orientation is 35 degrees toward the North-East). These findings have been confirmed by the separate calculations based on the local and international standards and codes. Keywords: energy, low energy design, passive solar heating and cooling, extreme weather conditions and energy consumption.


2019 ◽  
Vol 36 ◽  
pp. 100544 ◽  
Author(s):  
Arailym Alikhanova ◽  
Aldiyar Kakimzhan ◽  
Anuarbek Mukhanov ◽  
Luis Rojas-Solórzano

Sign in / Sign up

Export Citation Format

Share Document