Surge Characteristics and Range Extension With Steam Injection in a Centrifugal Compressor With Vaned Diffuser

Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Weijia Yao ◽  
Jicheng Duan

This paper describes the experimental results of both steady and unsteady flow behavior and surge extension with steam injection in a centrifugal compressor with vaned diffuser and downstream collector. Specifically, the stage stability analysis and effects of steam injection on surge margin are reported based on experimental results in detail. As the first step, a meanline analysis based on empirical correlations is utilized to find the possible stability dominated component. Then surge extension methods are put forward on the investigated compressor to enhance field operability. To validate the meanline analysis, the static performance of both stage and components from the experiments were analyzed and the root cause of system surge was again given based on the classic stability theory. The experimental results not only prove the validity of the former stability analysis but also extend the surge margin at least 9.0% with only 0.3% saturated steam of designed mass flow rate. During the experiments, it was also found that the surge margin improvement was not in proportion to the flow injected. In certain cases, the injected steam at large flow rate can even trigger system surge earlier. To the authors’ known, this is the first report on surge extension with steam injection in open literature.

Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Haiqing Liu ◽  
Hongwu Zhang ◽  
Jundang Shi

This paper concerns with the numerical and experimental aspects of both steady and unsteady flow behavior in a centrifugal compressor with vaneless diffuser and downstream collector. Specifically, the appearance of flow instabilities i.e., rotating stall and surge is investigated in great detail. As the first step, the static performance of both stage and component was analyzed and possible root cause of system surge was put forward based on the classic stability theory. Then the unsteady pressure data was utilized to find rotating stall and surge in frequency domain which could be classified as mild surge and deep surge. With the circumferentially installed transducers at impeller inlet, backward travelling waves during stall ramp could be observed. The modes of stall waves could be clearly identified which is caused by impeller leading edge flow recirculation at Mu = 0.96. However, for the unstable flow at Mu = 1.08, the system instability seems to be caused by reversal flow in vaneless diffuser where the pressure oscillation was strongest. Thus steady numerical simulation were performed and validated with the experimental performance data. With the help of numerical analysis, the conjectures are proved.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


Author(s):  
Johannes Ratz ◽  
Sebastian Leichtfuß ◽  
Maximilian Beck ◽  
Heinz-Peter Schiffer ◽  
Friedrich Fröhlig

Currently, 3D-CFD design optimization of centrifugal compressors in terms of the surge margin is one major unresolved issue. On that account, this paper introduces a new kind of objective function. The objective function is based on local flow parameters present at the design point of the centrifugal compressor. A centrifugal compressor with a vaned diffuser is considered to demonstrate the performance of this approach. By means of a variation of the beta angle distribution of the impeller and diffuser blade, 73 design variations are generated, and several local flow parameters are evaluated. Finally, the most promising flow parameter is transferred into an objective function, and an optimization is carried out. It is shown that the new approach delivers similar results as a comparable optimization with a classic objective function using two operating points for surge margin estimation, but with less computational effort since no second operating point near the surge needs to be considered.


Author(s):  
Beat Ribi ◽  
Georg Gyarmathy

The present paper concerns the transition from mild to deep surge in a single stage centrifugal compressor using a vaned diffuser. Time-resolved measurements of the mass flow rate and the static pressures at various locations of the compressor were analyzed for different diffuser geometries and different operating points in the compressor map. When the throttle valve was gradually closed at an impeller tip Mach number (Mu) above 0.4, the compressor showed first mild and then deep surge whereas at Mu=0.4 rotating stall was the dominant instability. This single-cell rotating stall was identified to be caused by the impeller. During mild surge at higher Mach numbers the instantaneous flow and pressure traces showed that the overall flow at the stage inlet intermittently dropped below the critical value associated with the occurence of impeller rotating stall. Rotating stall appeared for a while but vanished as soon as the flow increased again. With further throttling, however, a threshold was reached at which rotating stall triggered deep surge. The results show that triggering only occurred if the flow deficiency causing rotating stall persisted long enough to permit the stall cell to make at least one or two revolutions.


1995 ◽  
Vol 117 (4) ◽  
pp. 602-608 ◽  
Author(s):  
A. Pinarbasi ◽  
M. W. Johnson

Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16 percent below and an 11 percent above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle is used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.


1992 ◽  
Vol 114 (2) ◽  
pp. 312-320 ◽  
Author(s):  
S. Mizuki ◽  
Y. Oosawa

Unsteady flow patterns throughout a centrifugal compressor system during the rotating stall and the surge were measured experimentally. Various kinds of unsteady behavior of the flow appeared both continuously and suddenly as the flow rate decreased. The part-span stall, the full-span stall, the mild and deep stalls, and the deep surge appeared clearly. The fluctuations caused by the full-span stall were seen even during surge and affected the flow within the scroll through the vaneless diffuser. The experimental results were compared with those computed by the lumped parameter theory. Good agreements between them were obtained when appropriate values were selected for the lumped parameters.


1991 ◽  
Vol 113 (4) ◽  
pp. 696-702 ◽  
Author(s):  
C. Rodgers

This paper describes the results of compressor rig testing with a moderately high specific speed, high inducer Mack number, single-stage centrifugal compressor, with a vaned diffuser, and adjustable inlet guide vanes (IGVs). The results showed that the high-speed surge margin was considerably extended by the regulation of the IGVs, even though the vaned diffuser was apparently operating stalled. Simplified one-dimensional analysis of the impeller and diffuser performances indicated that at inducer tip Mach numbers approaching and exceeding unity, the high-speed surge line was triggered by inducer stall. Also, IGV regulation increased impeller stability. This permitted the diffuser to operate stalled, providing the net compression system stability remained on a negative slope.


Author(s):  
Shimpei Mizuki ◽  
Yoshimi Oosawa

Unsteady flow patterns throughout a centrifugal compressor system during the rotating stall and the surge were measured experimentally. Various kinds of unsteady behaviors of the flow appeared both continuously and suddenly as the flow rate decreased. The part-span stall, the full-span stall, the mild and the deep stalls and the deep surge appeared clearly. The fluctuations caused by the full-span stall were seen even during the surge and affected the flow within the scroll through the vaneless diffuser. The experimental results were compared with those computed by the lumped parameter theory. The good agreements between them were obtained when the appropriate values were selected for the lumped parameters.


Author(s):  
Ali Zamiri ◽  
Jin Taek Chung

Three-dimensional, compressible, unsteady Navier-Stokes equations are solved to investigate the unsteady flow behavior in a transonic centrifugal compressor. The computational model is a high compression ratio centrifugal compressor (4:1) consisted of an inlet duct, an impeller (15 main blades and 15 splitters) and a diffuser vane with 24 two-dimensional wedge vanes. The aim of this study is to conduct a comprehensive assessment of the ability of a hybrid scale-adaptive simulation (SAS) turbulent model to characterize the transient flow structures within the compressor passages. The main idea of SAS approach, an improved URANS (unsteady Reynold-averaged Navier-Stokes) model, is based on the introduction of von Karman length scale into the turbulent scale equation which results in LES-like behavior in unsteady regions of the flow field. A numerical sensitivity test is performed to validate the computational results in terms of pressure ratio and compressor efficiency. Instantaneous and mean flow field analyses are presented in the impeller and the vaned diffuser. Applying transient simulations, it is shown that the interaction between the pressure waves and the surface pressure of the diffuser blades leads to a pulsating behavior within the diffuser. Moreover, spectral analysis is evaluated to analyze the BPF tonal noise as the main noise source of centrifugal compressors. In addition, the current SAS results are compared with those of the URANS-SST (shear stress transport) approach to show the ability of SAS approach in the prediction of the turbulent structures where the SAS model leads to a much better resolution of the unsteady fluctuations. This study shows that the current SAS approach, as an alternative to the existing hybrid RANS/LES methods, is promising in terms of prediction of transient phenomena like LES, but with a substantially reduced turn-around time.


Author(s):  
R. Rajendran

The overall efficiency of a compressor is dependent on the design of both the impeller and the diffuser. The vaned diffuser reduces the operating range compared to the vaneless diffuser. However, by proper setting of the diffuser with reference to the impeller, it is possible to achieve a good stage performance. This paper describes the experimental investigation of the detailed flow behavior inside a centrifugal compressor stage for three different setting angles of the vaned diffuser with reference to the fixed impeller blade outlet angle. It is seen that diffuser setting angles lower than the impeller outlet flow angle gives wide operating range.


Sign in / Sign up

Export Citation Format

Share Document