Fractional Order Thermoelastic Waves of Cylindrical Gold Nano-Beam

Author(s):  
Hamdy M. Youssef ◽  
Khaled A. Elsibai ◽  
Alaa A. El-Bary

In this work, a mathematical model of cylindrical nano-beam with constant elastic parameters with fractional order heat conduction will be constructed. The governing equations of the mathematical model will be taken when the beam is quiescent first. Laplace transforms techniques will be used to get the general solution for any set of boundary conditions. The solution will be obtained for a certain model when the beam is subjected to thermal load. Inversion of Laplace transforms will be obtained numerically, and the results will be presented graphically with some comparisons to study the impact of thermal load and the effect of the fractional order parameter on the speed of progress of mechanical and thermal waves through the beam.

2017 ◽  
Vol 14 (1) ◽  
pp. 529-535
Author(s):  
Eman A. N Al-Lehaibi

In this work, a mathematical model for the thermoelastic medium with constant elastic parameters in the context of two-temperature generalized thermoelasticity without energy dissipation has been constructed. The governing equations of the mathematical model will be taken when the medium is quiescent first. Laplace transforms techniques will be used to get the general solution for any set of boundary conditions. The solution will be obtained for a particular model when the medium is subjected to a thermal load by using stat-space approach. The inversion of the Laplace transforms will be calculated numerically and after that we’ll present the results graphically with some comparisons to study the impact of thermal or mechanical load on the speed of progress of mechanical and thermal waves through the medium. Also, to studying the effect of the two-temperature parameter rotation parameter on all the studied field.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1888
Author(s):  
Óscar E. Coronado-Hernández ◽  
Ivan Derpich ◽  
Vicente S. Fuertes-Miquel ◽  
Jairo R. Coronado-Hernández ◽  
Gustavo Gatica

The study of draining processes without admitting air has been conducted using only steady friction formulations in the implementation of governing equations. However, this hydraulic event involves transitions from laminar to turbulent flow, and vice versa, because of the changes in water velocity. In this sense, this research improves the current mathematical model considering unsteady friction models. An experimental facility composed by a 4.36 m long methacrylate pipe was configured, and measurements of air pocket pressure oscillations were recorded. The mathematical model was performed using steady and unsteady friction models. Comparisons between measured and computed air pocket pressure patterns indicated that unsteady friction models slightly improve the results compared to steady friction models.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


Author(s):  
Hamdy Hassan

Abstract In this paper, a theoretical study is presented on enhancement of the solar still performance by using the exhaust gases passing inside a chimney under the still basin. The impact of the exhaust gases temperature on the solar still temperature, productivity, and efficiency are considered. The performance of solar still with chimney is compared with that of conventional solar still. The study is carried out under the hot and climate conditions of Upper Egypt. A complete transient mathematical model of the physical model including the solar still regions temperatures, productivity, and heat transfer between the solar still and the exhaust gases are constructed. The mathematical model is solved numerically by using fourth-order Runge-Kutta method and is programmed by using MATLAB. The mathematical model is validated using an experimental work. The results show that the solar still saline water temperature increases and productivity with using and rising the exhaust gases. Furthermore, the impact of using exhaust gases on the still performance in winter is greater than in summer. using chimney exhaust gases at 75 °C and 125 °C enhances the daily freshwater yield of the conventional still by more than three times and about six times in winter, respectively, and about two and half times and more than three times in summer, respectively.


2020 ◽  
pp. 442-451
Author(s):  
А.V. Batig ◽  
A. Ya. Kuzyshyn

One of the most important problems that pose a serious threat to the functioning of railways is the problem of freight cars derailment. However, according to statistics, the number of cases of the derailments of freight cars in trains annually grows. Тo prevent such cases, the necessary preventive measures are developed, and to study the causes of their occurrence, a significant number of mathematical models, programs and software systems created by leading domestic and foreign scientists. Studies of such mathematical models by the authors of this work have led to the conclusion that they are not sufficiently detailed to the extent that it is necessary for analyze the reasons of its derailment. At the same time, an analysis of the causes of the rolling stock derailments on the railways of Ukraine over the past five years showed that in about 20 % of cases they are obvious, and in 7 % of cases they are not obvious and implicitly expressed. The study of such cases of rolling stock derailment during an official investigation by the railway and during forensic railway transport expertises requires the use of an improved mathematical model of a freight car, which would allow a quantitative assessment of the impact of its parameters and rail track on the conditions of railway accidents. Therefore, taking into account the main reasons that caused the occurrence of such railroad accidents over the last five years on the railways of Ukraine, the article selected the main directions for improving the mathematical model of a freight car, allowing to cover all the many factors (explicit and hidden) and identify the most significant ones regarding the circumstances of the derailment rolling stock off the track, established on the basis of a computer experiment. It is proposed in the mathematical model of a freight car to take into account the guiding force, the value of which is one of the main indicators of the stability of the rolling stock. The authors of the article noted that not taking into account the influence of the guiding forces on the dynamics of the freight car can lead to an erroneous determination of the reasons for the rolling stock derailment or even to the impossibility of establishing them.


1986 ◽  
Vol 164 ◽  
pp. 429-448 ◽  
Author(s):  
Victor Barcilon ◽  
Frank M. Richter

An investigation of the mathematical model of a compacting medium proposed by McKenzie (1984) for the purpose of understanding the migration and segregation of melts in the Earth is presented. The numerical observation that the governing equations admit solutions in the form of nonlinear one-dimensional waves of permanent shape is confirmed analytically. The properties of these solitary waves are presented, namely phase speed as a function of melt content, nonlinear interaction and conservation quantities. The information at hand suggests that these waves are not solitons.


Author(s):  
Daoud Kiomjian ◽  
F. Jordan Srour ◽  
Issam Srour

Conventional wisdom in the management literature holds that diversity is positively correlated with performance. Yet, the findings from the construction field indicate that this is not always the case. In an effort to study the interaction between diversity and performance in the construction industry, this paper presents the elements of a theoretical mathematical model to explore the relationship between diversity and knowledge sharing which is a precursor of performance. This model includes five dimensions of diversity: ethnicity, age, experience, language and education. At the heart of the mathematical model is a fuzzy based system that generates the probability of knowledge sharing among members with different demographic attributes. The presented fuzzy system will, in future work, become the foundation of an agent based model used to study the impact of worker interactions on productivity.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Muhammad Asif Zahoor Raja ◽  
Junaid Ali Khan ◽  
Ijaz Mansoor Qureshi

A stochastic technique has been developed for the solution of fractional order system represented by Bagley-Torvik equation. The mathematical model of the equation was developed with the help of feed-forward artificial neural networks. The training of the networks was made with evolutionary computational intelligence based on genetic algorithm hybrid with pattern search technique. Designed scheme was successfully applied to different forms of the equation. Results are compared with standard approximate analytic, stochastic numerical solvers and exact solutions.


Sign in / Sign up

Export Citation Format

Share Document