scholarly journals NECESSITY TO IMPROVE THE MATHEMATICAL MODEL OF FREIGHT CARS TO STUDY CASES OF ITS DERAILMENTS

2020 ◽  
pp. 442-451
Author(s):  
А.V. Batig ◽  
A. Ya. Kuzyshyn

One of the most important problems that pose a serious threat to the functioning of railways is the problem of freight cars derailment. However, according to statistics, the number of cases of the derailments of freight cars in trains annually grows. Тo prevent such cases, the necessary preventive measures are developed, and to study the causes of their occurrence, a significant number of mathematical models, programs and software systems created by leading domestic and foreign scientists. Studies of such mathematical models by the authors of this work have led to the conclusion that they are not sufficiently detailed to the extent that it is necessary for analyze the reasons of its derailment. At the same time, an analysis of the causes of the rolling stock derailments on the railways of Ukraine over the past five years showed that in about 20 % of cases they are obvious, and in 7 % of cases they are not obvious and implicitly expressed. The study of such cases of rolling stock derailment during an official investigation by the railway and during forensic railway transport expertises requires the use of an improved mathematical model of a freight car, which would allow a quantitative assessment of the impact of its parameters and rail track on the conditions of railway accidents. Therefore, taking into account the main reasons that caused the occurrence of such railroad accidents over the last five years on the railways of Ukraine, the article selected the main directions for improving the mathematical model of a freight car, allowing to cover all the many factors (explicit and hidden) and identify the most significant ones regarding the circumstances of the derailment rolling stock off the track, established on the basis of a computer experiment. It is proposed in the mathematical model of a freight car to take into account the guiding force, the value of which is one of the main indicators of the stability of the rolling stock. The authors of the article noted that not taking into account the influence of the guiding forces on the dynamics of the freight car can lead to an erroneous determination of the reasons for the rolling stock derailment or even to the impossibility of establishing them.

2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


Transport ◽  
2004 ◽  
Vol 19 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Gintautas Bureika ◽  
Leonas Povilas Lingaitis ◽  
Šarūnas Mikaliūnas

The article deals with the modelling of independently rotating wheels (IRW) systems for wagons. The research work of the intensity of rolling stock wheels rims and flanges is observed. The main performance objectives of IRW are to reduce winding of wheel‐sets, to enable railway rolling stocks to achieve higher speeds, to decrease wear of rail and wheel rolling surface, to improve the performance on railway curves and to reduce lateral displacement on rails. IRW with profiled tread are examined and the mathematical model of these IRW is created. Finally, the peculiarities of the stability and wearing characteristics of such IRW systems are presented.


Author(s):  
Sergii Zhdanov ◽  
◽  
Natalia Kadet ◽  
Valerii Silkov ◽  
Mariia Zirka ◽  
...  

The paper presents one of the perspective directions of the development to modern aviation, which is connected with designing and producing unmanned aerial vehicles (UAV) of various functionalities for applying in both military and civilian spheres. The syntheses of UAV control systems, regardless of their type and purpose presumes creation of adequate mathematical models, first of all adequate aerodynamic mathematical models. In the paper results that forms and justify the aerodynamic mathematical model and as well as the results of building a general mathematical model of the longitudinal movement of the perspective UAV are presented. Also factors that forms the mathematical model on given aerodynamic, geometric, mass and inertial data for a hypothetical perspective altitude long-range UAV are submitted. Assessment of the impact of these data on the dynamic, temporal, and logarithmic frequency response UAV also has been given in this paper.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


2021 ◽  
Vol 8 (4) ◽  
pp. 783-796
Author(s):  
H. W. Salih ◽  
◽  
A. Nachaoui ◽  

In this work, we study an impulsive mathematical model proposed by Chavez et al. [1] to describe the dynamics of cancer growth and HIV infection, when chemotherapy and HIV treatment are combined. To better understand these complex biological phenomena, we study the stability of equilibrium points. To do this, we construct an appropriate Lyapunov function for the first equilibrium point while the indirect Lyapunov method is used for the second one. None of the equilibrium points obtained allow us to study the stability of the chemotherapeutic dynamics, we then propose a bifurcation of the model and make a study of the bifurcated system which contributes to a better understanding of the underlying biochemical processes which govern this highly active antiretroviral therapy. This shows that this mathematical model is sufficiently realistic to formulate the impact of this treatment.


Author(s):  
Hamdy Hassan

Abstract In this paper, a theoretical study is presented on enhancement of the solar still performance by using the exhaust gases passing inside a chimney under the still basin. The impact of the exhaust gases temperature on the solar still temperature, productivity, and efficiency are considered. The performance of solar still with chimney is compared with that of conventional solar still. The study is carried out under the hot and climate conditions of Upper Egypt. A complete transient mathematical model of the physical model including the solar still regions temperatures, productivity, and heat transfer between the solar still and the exhaust gases are constructed. The mathematical model is solved numerically by using fourth-order Runge-Kutta method and is programmed by using MATLAB. The mathematical model is validated using an experimental work. The results show that the solar still saline water temperature increases and productivity with using and rising the exhaust gases. Furthermore, the impact of using exhaust gases on the still performance in winter is greater than in summer. using chimney exhaust gases at 75 °C and 125 °C enhances the daily freshwater yield of the conventional still by more than three times and about six times in winter, respectively, and about two and half times and more than three times in summer, respectively.


Author(s):  
A. Y Kuzyshyn ◽  
S. A Kostritsia ◽  
Yu. H Sobolevska ◽  
А. V Batih

Purpose. Taking into account the production and commissioning of modern high-speed rolling stock, the authors are aimed to analyze the currently created mathematical models describing the dynamic behavior of the air spring, systematize them and consider the advantages and disadvantages of each model type. Methodology. For the analysis, a comparative chronological method was used, which makes it possible to trace the development of several points of view, concepts, theories. In accordance with the adopted decision equations, the existing models of air springs were divided into three groups: mechanical, thermodynamic and finite-elements. When analyzing mathematical models, the influence of a number of parameters on the dynamic behavior of the air spring, such as disturbing force frequency, heat transfer, nonlinear characteristics of materials, the shape of the membrane, etc., was considered. Findings. A feature of mechanical models is the determination of input parameters based on the analysis of experimental results, requires access to complex measuring equipment and must be performed for each new model of an air spring separately. Unlike mechanical models, which allow taking into account the damping effect of an air spring in the horizontal and vertical direction, thermodynamic models are mainly focused on studying the dynamic behavior of an air spring in the vertical direction. The use of the finite element method makes it possible to most accurately reproduce the dynamic behavior of an air spring, however, it requires significant expenditures of time and effort to create a finite element model and perform calculations. Originality. Mathematical models of the dynamic behavior of an air spring are systematized, and the importance of their study in conjunction with a spatial mathematical model of high-speed rolling stock is emphasized. Practical value. The analysis of the mathematical models of the dynamic behavior of the air spring shows the ways of their further improvement, indicates the possibility of their use in the spatial mathematical model of the rolling stock in accordance with the tasks set. It will allow, even at the design stage of high-speed rolling stock, to evaluate its dynamic characteristic and traffic safety indicators when interacting with a railway track.


India is a worldwide agriculture business powerhouse. Future of agriculture-based products depends on the crop production. A mathematical model might be characterized as a lot of equations that speak to the conduct of a framework. By using mathematical model in agriculture field, we can predict the production of crop in particular area. There are various factors affecting crops such as Rainfall, GHG Emissions, Temperature, Urbanization, climate, humidity etc. A mathematical model is a simplified representation of a real-world system. It forms the system using mathematical principles in the form of a condition or a set of conditions. Suppose we need to increase the crop production, at that time the mathematical model plays a major role and our work can be easier, more significant by using the mathematical model. Through the mathematical model we predict the crop production in upcoming years. .AI, ML, IOT play a major role to predict the future of agriculture, but without mathematical models it is not possible to predict crop production accurately. To solve the real-world agriculture problem, mathematical models play a major role for accurate results. Correlation Analysis, Multiple Regression analysis and fuzzy logic simulation standards have been utilized for building a grain production benefit depending model from crop production. Prediction of crop is beneficiary to the farmer to analyze the crop management. By using the present agriculture data set which is available on the government website, we can build a mathematical model.


Sign in / Sign up

Export Citation Format

Share Document