Influences of Water Injection Rate and Oil Length on Oil Slug Mobilization in a Capillary Model

Author(s):  
Liming Dai ◽  
Yihe Zhang

In this paper, numerical research has been investigated for oil-water two-phase flow in a capillary model by software FLUENT. The flow behavior of the oil slug and the influences of both water injection rate and oil slug length have been considered. Results indicate that numerical model performs well in simulating oil slug shape variation; meanwhile, the maximum driven pressure magnitude is proportional to the water injection rate and the oil slug length, and the flow time is inversely proportional to the water injection rate.

2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.


2017 ◽  
Vol 27 (04) ◽  
pp. 1750059 ◽  
Author(s):  
Zhong-Ke Gao ◽  
Shan-Shan Zhang ◽  
Wei-Dong Dang ◽  
Shan Li ◽  
Qing Cai

The exploration of two-phase flows, as a multidisciplinary subject, has drawn a great deal of attention on account of its significance. The dynamical flow behaviors underlying the transitions of oil–water bubbly flows are still elusive. We carry out oil–water two-phase flow experiments and capture multichannel flow information. Then we propose a novel methodology for inferring multilayer network from multivariate time series, which enables to fuse multichannel flow information at different frequency bands. We employ macro-scale, meso-scale and micro-scale network measures to characterize the generated multilayer networks, and the results suggest that our analysis allows uncovering the nonlinear flow behaviors underlying the transitions of oil-in-water bubbly flows.


Author(s):  
Eon Soo Lee ◽  
Carlos H. Hidrovo ◽  
Julie E. Steinbrenner ◽  
Fu-Min Wang ◽  
Sebastien Vigneron ◽  
...  

This experimental paper presents a study of gas-liquid two phase flow in rectangular channels of 500μm × 45μm and 23.7mm long with different wall conditions of hydrophilic and hydrophobic surface, in order to investigate the flow structures and the corresponding friction factors of simulated microchannels of PEMFC. The main flow in the channel is air and liquid water is injected at a single or several discrete locations in one side wall of the channel. The flow structure of liquid water in hydrophilic wall conditioned channel starts from wavy flow, develops to stable stratified film flow, and then transits to unstable fluctuating film flow, as the pressure drop and the flow velocity of air increase from around 10 kPa to over 100 kPa. The flow structure in hydrophobic channel develops from the slug flow to slug-and-film flow with increasing pressure drop and flow velocity. The pressure drop for single phase flow is measured for a base line study, and the fRe product is in close agreement with the theoretical value (fRe = 85) of the conventional laminar flow of aspect ratio 1:11. At the low range of water injection rate, the gas phase fRe product of the two phase flow based on the whole channel area was not substantially affected by the water introduction. However, as the water injection rate increases up to 100 μL/min, the gas phase fRe product based on the whole channel area deviates highly from the single phase theoretical value. The gas phase fRe product with the actual gas phase area corrected by the liquid phase film thickness agrees with the single phase theoretical value.


Author(s):  
Yihe Zhang ◽  
Liming Dai

A capillary model is employed to study the slug flow behavior in pore structure. Oil-water system and oil-gas system are investigated in the experiments. During the flow process, it is observed that the wetting phase liquid will generate a thin liquid film on the inner surface of the tube wall, and the liquid film plays an important role in capillary flow. At the meantime, the pressure drop across the tube is recorded during the experiment, result shows that the pressure drop magnitude is proportional to the oil slug length, while it is not significantly affected by the liquid injecting velocity.


1970 ◽  
Vol 10 (01) ◽  
pp. 75-84 ◽  
Author(s):  
F.N. Schneider ◽  
W.W. Owens

Abstract Three-phase relative permeability characteristics applicable to various oil displacement processes in the reservoir such as combustion and alternate gas-water injection were determined on both outcrop and reservoir core samples. Steady-state and nonsteady-state tests were performed on a variety of sandstone and carbonate core samples having different wetting properties. Some of the tests were performed on preserved samples. Some of the three-phase tests were performed on samples that contained two flowing phases and a third nonflowing phase, either gas or oil. These were classed as three-phase flow tests because the third phase played an important role in the flow behavior which was determined. The three-phase relative permeability test results are directly compared with the results of two-phase gas-oil and water-oil test. Wetting-phase relative permeability was found to be primarily dependent on its own saturation, i.e., relative permeability to the wetting phase during three-phase flow was in agreement with and could be predicted from the tow-phase data. Nonwetting-phase relative permeability-saturation relationships were found to be more complex and to depend in some cases on the saturation history of both nonwetting phases and on the saturation ratio of the second nonwetting phase and the wetting phases. Trapping of a given nonwetting phase or mutual flow interference between the two nonwetting phases when both are flowing accounts for most of the low relative permeabilities observed for three-phase flow tests. However, in special cases nonwetting-phase relative permeabilities at a given saturation are higher than those given by two-phase flow data. Despite these complexities some types of three-phase flow behavior can be predicted from two-phase flow data. Through its effect on the spatial distribution of the phases, wettability is shown to be a controlling factor in determining three-phase relative permeability characteristics. however, despite the importance of wettability the present data shown that for both water-wet and oil-wet systems oil recovery can be improved by several different injection processes, but the additional oil recovery is accompanied by lower fluid mobility. Introduction The increasing emphasis on optimizing recovery and the rapid and extensive development and use of mathematical modes for predicting reservoir performance are together creating a widespread need for reliable basic data on rock flow behavior. The two-phase imbibition or drainage flow relationships common to conventional oil recovery processes (depletion, gas or water injection, gravity drainage) are not applicable to some of the newer secondary and tertiary recovery techniques. This is because the reservoir displacement process may differ from that easily simulated in laboratory relative permeability studies. in some situations, data are needed fro a three-phase system where almost any combination of two fluids or even all three fluids may be flowing. In other, however, only two flowing phases are present, but the saturation history of the system is unique. Leverett and Lewis were the first to collect experimental relative permeability data on a three-phase system. Corey et al. were similarly leaders in efforts to define three-phase flow relationships using empirical approaches. Space does not permit a critical review of these earlier works. For those interested, a recent article by Saraf and Fatt provides a brief discussion of the experimental techniques used by earlier investigators. Suffice it to say that both experimental and empirical approaches have been used, but the applicability of both has been limited because in only one case have three-phase relative permeability data been obtained on reservoir rock material. SPEJ P. 75ˆ


2021 ◽  
Vol 2076 (1) ◽  
pp. 012015
Author(s):  
Xiaomin Zheng ◽  
Ning Li ◽  
Dong Li ◽  
Nan Li

Abstract Understanding the dynamic migration mechanism of oil-water two-phase is the key to improve the effect of water injection development in low permeability fractured reservoir. Based on artificial fracturing of core and basic physical parameter testing, the online NMR displacement experiments of cores with different fracture widths are conducted to analyze the oil-water dynamic distribution characteristics and migration mechanisms. The experimental results show that when water breaks through at the outlet, oil volume in the small pores is basically unchanged. In the large pores it decreases to a certain extent, while in the fracture it decreases greatly. When the displacement is over, oil volume in the small pores still changes little, while it decreases greatly in the large pores, and it is almost zero in the fracture. With the decrease of fracture width, the recovery ratio when waterflooding front breaks through and the final recovery ratio after displacement increase gradually. The contribution proportion of recovery ratio in the fracture decreases as a whole, while in the large pores it increases gradually, and in the small pores it decreases slightly. The research results lay a foundation for the optimal design of fracture parameters and the adjustment of water injection development technology policy in low permeability fractured reservoir.


Sign in / Sign up

Export Citation Format

Share Document