A Comparison of Oil-Water Flow and Oil-Gas Flow in Capillary Model

Author(s):  
Yihe Zhang ◽  
Liming Dai

A capillary model is employed to study the slug flow behavior in pore structure. Oil-water system and oil-gas system are investigated in the experiments. During the flow process, it is observed that the wetting phase liquid will generate a thin liquid film on the inner surface of the tube wall, and the liquid film plays an important role in capillary flow. At the meantime, the pressure drop across the tube is recorded during the experiment, result shows that the pressure drop magnitude is proportional to the oil slug length, while it is not significantly affected by the liquid injecting velocity.

Author(s):  
Budi Chandra ◽  
Kathy Simmons ◽  
Stephen Pickering ◽  
Marc Tittel

In a typical aero engine bearing chamber, oil is introduced to lubricate and cool the bearings as well as the bearing chamber wall. The flow of the oil in the bearing chamber is very complex due to the presence of various forces: gravity, windage, capillary, etc. These pose a great challenge for designers, in particular on how to effectively and efficiently scavenge the hot oil out of the bearing chamber. The University of Nottingham Technology Centre in Gas Turbine Transmission Systems is conducting an ongoing experimental program on liquid and gas flow behavior in the highly rotating environment typically found in a bearing chamber. This paper presents results from a study of the thin film on the wall of a generic bearing chamber consisting of an inner rotating shaft and outer stationary cylindrical wall. Thin liquid film behavior in a cylindrical chamber, subject to only gravity or together with the presence of shearing air flow is of interest in many industrial applications and processes. Measurements of film thickness were taken at various axial and angular locations, at various representative inlet flow rates, scavenge ratios and shaft rotational speeds. The experimental data provides insight on the behavior of thin liquid film as it travels down the inner chamber wall subject to both gravity and shearing air flow and provides a data set eminently suitable for CFD validation. The film thickness measurements are discussed in relation to previously published chamber residence volume data [1].


1989 ◽  
Vol 3 (4) ◽  
pp. 389-404
Author(s):  
Tohru FUKANO ◽  
Katsuhiko KADOGUCHI ◽  
Mikio KANAMORI ◽  
Akira TOMINAGA

Author(s):  
Liming Dai ◽  
Yihe Zhang

In this paper, numerical research has been investigated for oil-water two-phase flow in a capillary model by software FLUENT. The flow behavior of the oil slug and the influences of both water injection rate and oil slug length have been considered. Results indicate that numerical model performs well in simulating oil slug shape variation; meanwhile, the maximum driven pressure magnitude is proportional to the water injection rate and the oil slug length, and the flow time is inversely proportional to the water injection rate.


1996 ◽  
Vol 445 ◽  
Author(s):  
T. E. Driscoll ◽  
P. C. Li ◽  
G. L. Lehmann ◽  
E. J. Cotts

AbstractUnderfill encapsulants, used in direct‐chip‐attachment (DCA) packaging of electronics, consist of an epoxy resin in which a high concentration of solid particles are suspended. As a fluid mixture key features of these encapsulants are their relatively large particle sizes and large particle‐to‐liquid density ratios (ρs/ρ0 ?2.4). Experiments have been conducted to characterize the flow behavior of model mixtures of negatively buoyant, spherical particles suspended in Newtonian liquids. Capillary flow in a parallel surface channel is used to simulate the underfill flow process. The effects of varying the channel spacing, particle size and liquid carrier are reported here. The flow behavior is contrasted with a linear fluid, effective viscosity model. Particle settling appears to be linked to the more complex behavior observed in both our model suspensions and measurements using an actual commercial encapsulant.


2008 ◽  
Vol 3 (02) ◽  
pp. 1-11 ◽  
Author(s):  
Bahadir Gokcal ◽  
Qian Wang ◽  
Hong-Quan Zhang ◽  
Cem Sarica

2016 ◽  
Vol 92 ◽  
pp. 01037 ◽  
Author(s):  
Dmitry Zaitsev ◽  
Egor Tkachenko ◽  
Evgeniy Orlik ◽  
Oleg Kabov

Author(s):  
Jingzhi Zhang ◽  
Wei Li ◽  
Tom I.-P. Shih ◽  
Yonghai Zhang ◽  
Yanping Shi ◽  
...  

Heat transfer and pressure drop characteristics of condensation for R410A inside horizontal tubes (dh = 3.78 mm) under normal and micro gravity are investigated numerically. The Volume of Fluid method is used to acquire liquid-vapor interface, while the low-Reynolds form of the Shear Stress Transport k∼ω (SST k∼ω) model is adopted to taking turbulent effect into account. The results indicate that the heat transfer coefficients decrease with increasing gravity accelerations, while the frictional pressure gradients increase with increases in gravity accelerations. The liquid film accumulates at the bottom of the tube, leading to a very thin liquid film attached to the upper part of inner tube wall. This accumulation effect decreases with decreases in gravitational accelerations. A more symmetrical liquid-vapor interface is obtained at lower gravity. The average liquid film thickness is nearly the same for different gravity accelerations at the same vapor quality (δave≈56 μm at x = 0.9 and δave≈230 μm at x = 0.5). The local heat transfer coefficients increase with increasing gravity at the top of the tube and decrease with increases in gravity at the bottom, while the bottom part of the tube has a limited contribution to the global heat transfer coefficient for stratified flow regime. The numerical data obtained under normal gravity agree well with well-known empirical correlations.


2015 ◽  
Vol 22 (2) ◽  
pp. 191-202 ◽  
Author(s):  
I. S. Vozhakov ◽  
D. G. Arkhipov ◽  
O. Yu. Tsvelodub

1998 ◽  
Vol 515 ◽  
Author(s):  
P. C. Li ◽  
G. L. Lehmann ◽  
J. Cascio ◽  
T. Driscoll ◽  
Y. J. Huang ◽  
...  

ABSTRACTIn flip-chip packaging an underfill mixture is placed into the chip-to-substrate standoff created by the array of solder bumps, using a capillary flow process. The flow behavior is a complex function of the mixture properties, the wetting properties, and the flow geometry. This paper reports on the use of a plane channel capillary flow to characterize underfill materials. The measured flow behavior provides evidence that both the contact angle (θ) and the suspension viscosity (μapp) vary with time under the Influence of changing flow conditions. This nonlinear fluid behavior is modeled for the flow of both model suspensions and commercial underfill materials using an extended Washburn model.


Sign in / Sign up

Export Citation Format

Share Document