Fatigue and Fracture Mechanics Analysis of Friction Stir Welded Joints of Aerospace Aluminum Alloys Al-2195

Author(s):  
Muhammad A. Wahab ◽  
Vinay Raghuram

Friction-Stir-Welding (FSW) has been adopted as a major process for welding Aluminum aerospace structures. Aluminum (Al-2195) which is one of the new generations Aluminum alloys that has been used for the new super lightweight external tank for the space shuttle. NASA’s Michaud Assembly Facility (MAF) in New Orleans is continuously pursuing Friction-Stir-Welding (FSW) technologies in its efforts to advance fabrication of the external tanks of the space shuttles. The future launch vehicles which will have reusable mandates, for the structure to have good fatigue properties which prompts an investigation into the fatigue behavior of the friction stir welded aerospace structures. The butt joint specimens of Aluminum alloys (Al-2195 and Al-2219) are fatigue tested according to ASTM-E647. The effects of stress ratios, corrosion preventive compound (CPC), and periodic overloading on fatigue life is investigated. Scanning Electron Microscopy (SEM) is used to examine the failure surfaces and examine the different modes of crack propagation i.e. tensile, shear, and brittle modes. It is found that fatigue life increases with the increase in stress ratios; the fatigue life also increases from 30%–38% with the use of CPC; and the fatigue life could increase 8–12 times with periodic overloading; while the crack closure phenomenon predominates the fatigue fracture. Numerical analysis has been used to model fatigue life prediction scheme for these structures, the interface element technique with critical bonding strength criterion for formation of new surface has been used to model crack propagation. The linear elastic fracture mechanics stress intensity factor is calculated using FEA and the fatigue life predictions made using this method; and are within 10%–20% of the experimental fatigue life obtained.

Author(s):  
Muhammad A. Wahab ◽  
Vinay Raghuram

Abstract Among the recent research Friction-Stir-Welding (FSW) has been adopted worldwide as one of the dominant processes for welding lightweight aerospace Aluminum alloys. Al-2195 which is one of the new generation Aluminum alloys has been used in the external tank of the space shuttles. Aerospace fabricators are continuously pursuing FSW-technologies in its efforts to advance fabrication of the external tanks of the space shuttles. The future launch vehicles with reusable mandates require the structures to have excellent fatigue properties and improved fatigue lives. The butt-welded specimens of Al-2195 and Al-2219 are fatigue tested according to ASTM-E647. The effects of stress ratios, use of corrosion preventive compound (CPC), and the applications of periodic overloading on fatigue lives are investigated in this study. Scanning-electron-microscopy (SEM) is used to examine the criticality of the failure surfaces and the different modes of crack propagation that could have been initiated into the materials. It is found that fatigue life increases with the increase in stress ratio, and results show an increase in fatigue life ranging over 30% with the use of CPC, and the fatigue life increases even further with periodic overloading; whereas crack-closure phenomenon predominates the fatigue fracture. Fracture mechanics analysis and crack similitude was modified for fatigue cracks by Paris. Numerical studies using FEA has produced a model for fatigue life prediction scheme for these structures, where a novel strategy of the interface element technique with critical bonding strength criterion for formation of new fracture surfaces has been used to model fatigue crack propagation lives. The linear elastic fracture mechanics stress intensity factor is calculated using FEA and the fatigue life predictions made using this method are within 10–20% of the experimental fatigue life data obtained. This method overcomes the limitation of the traditional node-release scheme and closely matches the physics of the crack propagation.


Author(s):  
Muhammad A. Wahab ◽  
Vinay Raghuram

Friction-Stir-Welding (FSW) has been adopted as a major process for welding Aluminum aerospace structures. AA-2195 is one of the new generations Aluminum alloy (Al-Li) that has been used on the new super lightweight external tank of the space shuttle. The Lockheed Martin Space Systems (LMSS), Michaud Operations in New Orleans is continuously pursuing FSW technologies in its efforts to advance fabrication of the external tanks of the space shuttle. The future launch vehicles which will have to be reusable, mandates the structure to have good fatigue properties, which prompts an investigation into the fatigue behavior of the friction-stir-welded aerospace structures. The butt-joint specimens of Al-2195 are fatigue tested according to ASTM-E647. The effect of Stress ratios, Corrosion-Preventive-Compound (CPC), and periodic Overloading on fatigue life is investigated. Scanning Electron Microscopy (SEM) is used to examine the failure surfaces and examine the different modes of crack propagation i.e. tensile, shear, and brittle modes. It is found that fatigue life increases with the increase in stress ratio, the fatigue life increases from 30–38% with the use of CPC, the fatigue life increases 8–12 times with periodic overloading; crack closure phenomenon dominates the fatigue facture. Numerical Analysis using FEA has also been used to model fatigue life prediction scheme for these structures, the interface element technique with critical bonding strength criterion for formation of the new surfaces has been used to model crack propagation. The fatigue life predictions made using this method are within the acceptable ranges of 10–20% of the experimental fatigue life. This method overcomes the limitation of the traditional node-release scheme and closely follows the physics of crack propagation.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


2020 ◽  
Vol 52 ◽  
pp. 263-269 ◽  
Author(s):  
Jianing Li ◽  
Molin Su ◽  
Wenjun Qi ◽  
Chen Wang ◽  
Peng Zhao ◽  
...  

2014 ◽  
Vol 39 (8) ◽  
pp. 6363-6373 ◽  
Author(s):  
A. Karam ◽  
T. S. Mahmoud ◽  
H. M. Zakaria ◽  
T. A. Khalifa

Sign in / Sign up

Export Citation Format

Share Document