LED Lumen Degradation and Remaining Life Under Exposure to Temperature and Humidity

Author(s):  
Pradeep Lall ◽  
Hao Zhang

The development of light-emitting diode (LED) technology has resulted in widespread solid state lighting use in consumer and industrial applications. Previous researchers have shown that LEDs from the same manufacturer and operating under same use-condition may have significantly different degradation behavior. Applications of LEDs to safety critical and harsh environment applications necessitate the characterization of failure mechanisms and modes. This paper focuses on a prognostic health management (PHM) method based on the measurement of forward voltage and forward current of bare LED under harsh environment. In this paper experiments have been done on single LEDs subjected to combined temperature-humidity environment of 85°C, 85% relative humidity. Pulse width modulation (PWM) control method has been employed to drive the bare LED in order to reduce the heat effect caused by forward current and high frequency (300Hz). A data acquisition system has been used to measure the peak forward voltage and forward current. Test to failure (luminous flux drops to 70 percent) data has been measured to study the effects of high temperature and humid environment loadings on the bare LEDs. A solid state cooling method with a peltier cooler has been used to control the temperature of the LED in the integrating sphere when taking the measurement of luminous flux. The shift of forward voltage forward current curve and lumen degradation has been recorded to help build the failure model and predict the remaining useful life. Particle filter has been employed to assess the remaining useful life (RUL) of the bare LED. Model predictions of RUL have been correlated with experimental data. Results show that prediction of remaining useful life of LEDs, made by the particle filter model works with acceptable error-bounds. The presented method can be employed to predict the failure of LED caused by thermal and humid stresses.

Author(s):  
Pradeep Lall ◽  
Hao Zhang ◽  
Lynn Davis

The development of light-emitting diode (LED) technology has resulted in widespread solid state lighting use in consumer and industrial applications. Previous researchers have shown that LEDs from the same manufacturer and operating under same use-condition may have significantly different degradation behavior. Applications of LEDs to safety critical and harsh environment applications necessitate the characterization of failure mechanisms and modes. This paper focuses on a prognostic health management (PHM) method based on the measurement of forward voltage and forward current of bare LED under harsh environment. In this paper experiments have been done on single LEDs subjected to combined temperature-humidity environment of 85°C, 85% relative humidity. Pulse width modulation (PWM) control method has been employed to drive the bare LED in order to reduce the heat effect caused by forward current and high frequency (300Hz). A data acquisition system has been used to measure the peak forward voltage and forward current. Test to failure (luminous flux drops to 70 percent) data has been measured to study the effects of high temperature and humid environment loadings on the bare LEDs. A solid state cooling method with a peltier cooler has been used to control the temperature of the LED in the integrating sphere when taking the measurement of luminous flux. The shift of forward voltage forward current curve and lumen degradation has been recorded to help build the failure model and predict the remaining useful life. Particle filter has been employed to assess the remaining useful life (RUL) of the bare LED. Model predictions of RUL have been correlated with experimental data. Results show that prediction of remaining useful life of LEDs, made by the particle filter model works with acceptable error-bounds. The presented method can be employed to predict the failure of LED caused by thermal and humid stresses.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Pradeep Lall ◽  
Hao Zhang

The development of light-emitting diode (LED) technology has resulted in widespread solid state lighting (SSL) use in consumer and industrial applications. Previous researchers have shown that LEDs from the same manufacturer and operating under same use-condition may have significantly different degradation behavior. Applications of LEDs to safety critical and harsh environment applications necessitate the characterization of failure mechanisms and modes. This paper focuses on a prognostic health management (PHM) method based on the measurement of forward voltage and forward current of bare LED under harsh environment. In this paper, experiments have been done on single LEDs subjected to combined temperature–humidity environment of 85 °C, 85% relative humidity. Pulse width modulation (PWM) control method has been employed to drive the bare LED in order to reduce the heat effect caused by forward current and high frequency (300 Hz). A data acquisition system has been used to measure the peak forward voltage and forward current. Test to failure (luminous flux drops to 70%) data has been measured to study the effects of high temperature and humid environment loadings on the bare LEDs. A solid state cooling method with a Peltier cooler has been used to control the temperature of the LED in the integrating sphere when taking the measurement of luminous flux. The shift of forward voltage forward current curve and lumen degradation has been recorded to help build the failure model and predict the remaining useful life (RUL). Particle filter has been employed to assess the RUL of the bare LED. Model predictions of RUL have been correlated with experimental data. Results show that prediction of RUL of LEDs, made by the particle filter model, works with acceptable error-bounds. The presented method can be employed to predict the failure of LED caused by thermal and humid stresses.


Author(s):  
Pradeep Lall ◽  
Hao Zhang ◽  
Lynn Davis

The reliability consideration of LED products includes both luminous flux drop and color shift. Previous research either talks about luminous maintenance or color shift, because luminous flux degradation usually takes very long time to observe. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphor-converted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculate the luminous flux. Luminous flux degradation and color shift distance were plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable error-bounds (20%) after a short training of the estimator.


Sign in / Sign up

Export Citation Format

Share Document