CFD Study of a Fire Whirl of Huge Oil Tank: Burning Rate, Flame Length, Distributions of n-Heptane and Oxygen in a Fire Whirl

Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Xiaodong Xie ◽  
Wei Gao

The number of huge oil storage tanks is increasing in the world. If a fire occurs in one of these tanks, it is very difficult to suppress. Additionally, if a fire whirl occurs in an oil tank fire, it is extremely dangerous for firefighters to extinguish the fire. The authors have numerically studied huge fire whirls in a large oil tank depot and predicted the generation of those fire whirls. Here, another study is attempted to clarify the details of huge fire whirl in a large oil tank, using two kinds of fire whirl generation channels in CFD simulations using the software, FDS by NIST. Details of burning rates, velocities of whirling flames, radiative heat flux, heat release rates and whirling cycles are examined, using oil tanks with the diameters of 0.2 to 80 m. In oil tanks with a diameter of 80 m, a tall fire whirl is generated. The height is about 1000 m. In this study of oil tanks fires with small to large diameters, it has been found that fire whirl lengths are about 8 to 11 times of the oil tank diameter. The maximum radiative heat flux due to a fire whirl in 80 m diameter oil tanks exceeds 100 kW/m2. Since the maximum radiation is found at twice the distance of oil tank diameters from the tank centers, adjacent oil tanks may be ignited. This study has also examined a method used to prevent fire whirl generation in huge oil tanks.

Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Xiaodong Xie ◽  
Wei Gao

Merging of large-scale city fires and forest fires causes rapid acceleration of fire growth. Once a merging fire occurs, it becomes more difficult to suppress, with greater potential damages. In particular, merging fires may induce fire whirls in windy conditions. However, the details of interactions in multiple fires that cause fire merging have not been fully clarified. For the interactions in multiple fires, the inter-fire distance among fires greatly affects the merging phenomenon. The objective of this paper is to examine the detailed merging conditions, particularly the burning rate increase and total heat release rate, by numerical simulation of reduced scale fires. The burning behavior of n-heptane in n × n fire arrays is examined, using the fire simulation software, FDS by NIST. In addition, another simple model is employed. The number of array matrix, n, is varied, together with the inter-fire distance. The simulation results show that there are considerable differences between both simulations and experiments. However, the differences between the simpler simulation Method II and experiments are fewer than the simulation Method I. The following possibilities are considered: (1) The oil pan size affects the difference, but the results between simulations and experiments are so large. (2) The grid size for simulations may have some effects on the simulation results due to the resolution, (3) the experimental results may not always be precise, since the burning rates in the experiments are measured by the burn-out time and (4) the wind caused by merging fires may reduce the radiative heat flux to the adjacent fuel. The relationship between flame length and burning rate and the relationship between flame length and radiative heat flux are well-correlated.


Author(s):  
T. E. Magin ◽  
L. Caillault ◽  
A. Bourdon ◽  
C. O. Laux

2000 ◽  
Author(s):  
Christian Proulx ◽  
Daniel R. Rousse ◽  
Rodolphe Vaillon ◽  
Jean-François Sacadura

Abstract This article presents selected results of a study comparing two procedures for the treatment of collimated irradiation impinging on one boundary of a participating one-dimensional plane-parallel medium. These procedures are implemented in a CVFEM used to calculate the radiative heat flux and source. Both isotropically and anisotropically scattering media are considered. The results presented show that both procedures provide results in good agreement with those obtained using a Monte Carlo method, when the collimated beam impinges normally.


Author(s):  
Thomas Vega ◽  
Rachel A. Wasson ◽  
Brian Y. Lattimer ◽  
Thomas E. Diller

Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Sign in / Sign up

Export Citation Format

Share Document