An Enhanced Extraction Method Based on EEMD for Processing a Bearing Vibration Signal With Multiple Vibration Sources

Author(s):  
Wei Guo

Condition monitoring and fault diagnosis for rolling element bearings is an imperative part for preventive maintenance procedures and reliability improvement of rotating machines. When a localized fault occurs at the early stage of real bearing failures, the impulses generated by the defect are relatively weak and usually overwhelmed by large noise and other higher-level macro-structural vibrations generated by adjacent machine components and machines. To indicate the bearing faulty state as early as possible, it is necessary to develop an effective signal processing method for extracting the weak bearing signal from a vibration signal containing multiple vibration sources. The ensemble empirical mode decomposition (EEMD) method inherits the advantage of the popular empirical mode decomposition (EMD) method and can adaptively decompose a multi-component signal into a number of different bands of simple signal components. However, the energy dispersion and many redundant components make the decomposition result obtained by the EEMD losing the physical significance. In this paper, to enhance the decomposition performance of the EEMD method, the similarity criterion and the corresponding combination technique are proposed to determine the similar signal components and then generate the real mono-component signals. To validate the effectiveness of the proposed method, it is applied to analyze raw vibration signals collected from two faulty bearings, each of which involves more than one vibration sources. The results demonstrate that the proposed method can accurately extract the bearing feature signal; meanwhile, it makes the physical meaning of each IMF clear.

2014 ◽  
Vol 530-531 ◽  
pp. 261-265
Author(s):  
Min Qiang Xu ◽  
Yong Bo Li ◽  
Hai Yang Zhao ◽  
Si Yang Zhang

Focus on the nonlinear and non-stationary characteristics of gear box vibration signal, the method of gear fault diagnosis based on Ensemble Empirical Mode Decomposition (EEMD) and multiscale entropy (MSE) was proposed . The complicated signal can be decomposed into several stationary IMF components with reality meanings by EEMD which has the advantages of eliminating aliasing state of vibration signal, and the MSE can extract the fault feature from the signals effectively. The concepts of EEMD and MSE are introduced firstly, and then they are applied to measure the complexity of gearbox signals. Through the engineering application of the diagnosis on gear typical fault of different wearing degree demonstrated that the proposed method can extracting the fault feature of gear fault effectively and realize the gear fault diagnosis.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Shi-Chang Du ◽  
Tao Liu ◽  
De-Lin Huang ◽  
Gui-Long Li

The vibration signal decomposition is a critical step in the assessment of machine health condition. Though ensemble empirical mode decomposition (EEMD) method outperforms fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition (EMD) on nonstationary signal decomposition, there exists a mode mixing problem if the two critical parameters (i.e., the amplitude of added white noise and the number of ensemble trials) are not selected appropriately. A novel EEMD method with optimized two parameters is proposed to solve the mode mixing problem in vibration signal decomposition in this paper. In the proposed optimal EEMD, the initial values of the two critical parameters are selected based on an adaptive algorithm. Then, a multimode search algorithm is explored to optimize the critical two parameters by its good performance in global and local search. The performances of the proposed method are demonstrated by means of a simulated signal, two bearing vibration signals, and a vibration signal in a milling process. The results show that compared with the traditional EEMD method and other improved EEMD method, the proposed optimal EEMD method automatically obtains the appropriate parameters of EEMD and achieves higher decomposition accuracy and faster computational efficiency.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3125
Author(s):  
Zou ◽  
Chen ◽  
Liu

Considering the lack of precision in transforming measured micro-electro-mechanical system (MEMS) accelerometer output signals into elevation signals, this paper proposes a bridge dynamic displacement reconstruction method based on the combination of ensemble empirical mode decomposition (EEMD) and time domain integration, according to the vibration signal traits of a bridge. Through simulating bridge analog signals and verifying a vibration test bench, four bridge dynamic displacement monitoring methods were analyzed and compared. The proposed method can effectively eliminate the influence of low-frequency integral drift and high-frequency ambient noise on the integration process. Furthermore, this algorithm has better adaptability and robustness. The effectiveness of the method was verified by field experiments on highway elevated bridges.


2014 ◽  
Vol 6 ◽  
pp. 676205 ◽  
Author(s):  
Meijiao Li ◽  
Huaqing Wang ◽  
Gang Tang ◽  
Hongfang Yuan ◽  
Yang Yang

In order to improve the effectiveness for identifying rolling bearing faults at an early stage, the present paper proposed a method that combined the so-called complementary ensemble empirical mode decomposition (CEEMD) method with a correlation theory for fault diagnosis of rolling element bearing. The cross-correlation coefficient between the original signal and each intrinsic mode function (IMF) was calculated in order to reduce noise and select an effective IMF. Using the present method, a rolling bearing fault experiment with vibration signals measured by acceleration sensors was carried out, and bearing inner race and outer race defect at a varying rotating speed with different degrees of defect were analyzed. And the proposed method was compared with several algorithms of empirical mode decomposition (EMD) to verify its effectiveness. Experimental results showed that the proposed method was available for detecting the bearing faults and able to detect the fault at an early stage. It has higher computational efficiency and is capable of overcoming modal mixing and aliasing. Therefore, the proposed method is more suitable for rolling bearing diagnosis.


2011 ◽  
Vol 143-144 ◽  
pp. 689-693 ◽  
Author(s):  
X.J. Li ◽  
K. Wang ◽  
G.B. Wang ◽  
Q. Li

Vibration signals of rotating machinery on the base are very weak and always buried in noisy noise; the common denoising methods have become powerless. It presents an ensemble empirical mode decomposition method (EEMD) that is used to denoise for the base vibration signal, which not only to overcome the problem of mode mixing, but also to avoid the selection of wavelet basis function and decomposition level of the problem. Experimental results of simulation and measured data show that EEMD method can effectively reduce the base vibration signal noise, which is better than the wavelet and EMD denoising method.


Author(s):  
Yaguo Lei ◽  
Zongyao Liu ◽  
Julien Ouazri ◽  
Jing Lin

Ensemble empirical mode decomposition (EEMD) represents a valuable aid in empirical mode decomposition (EMD) and has been widely used in fault diagnosis of rolling element bearings. However, the intrinsic mode functions (IMFs) generated by EEMD often contain residual noise. In addition, adding different white Gaussian noise to the signal to be analyzed probably produces a different number of IMFs, and different number of IMFs makes difficult the averaging. To alleviate these two drawbacks, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was previously presented. Utilizing the advantages of CEEMDAN in extracting weak characteristics from noisy signals, a new fault diagnosis method of rolling element bearings based on CEEMDAN is proposed. With this method, a particular noise is added at each stage and after each IMF extraction, a unique residue is computed. In this way, this method solves the problem of the final averaging and obtains IMFs with less noise. A simulated signal is used to illustrate the effectiveness of the proposed method, and the decomposition results show that the method obtains more accurate IMFs than the EEMD. To further demonstrate the proposed method, it is applied to fault diagnosis of locomotive rolling element bearings. The diagnosis results prove that the method based on CEEMDAN may reveal the fault characteristic information of rolling element bearings better.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Qingbo He ◽  
Peng Li ◽  
Fanrang Kong

Measured vibration signals from rolling element bearings with defects are generally nonstationary, and are multiscale in nature owing to contributions from events with different localization in time and frequency. This paper presents a novel approach to characterize the multiscale signature via empirical mode decomposition (EMD) for rolling bearing localized defect evaluation. Vibration signal measured from a rolling element bearing is first adaptively decomposed by the EMD to achieve a series of usable intrinsic mode functions (IMFs) carrying the bearing health information at multiple scales. Then the localized defect-induced IMF is selected from all the IMFs based on a variance regression approach. The multiscale signature, called multiscale slope feature, is finally estimated from the regression line fitted over logarithmic variances of the IMFs excluding the defect IMF. The presented feature reveals the pattern of energy transfer among multiple scales due to localized defects, representing an inherent self-similar signature of the bearing health information that is embedded on multiple analyzed scales. Experimental results verify the performance of the proposed multiscale feature, and further discussions are provided.


Sign in / Sign up

Export Citation Format

Share Document