Analytical Modeling of Residual Stress in Railroad Rails Using Critically Refracted Longitudinal Ultrasonic Waves With COMSOL Multiphysics Module

Author(s):  
Lakshmi Divya Manchem ◽  
Malur N. Srinivasan ◽  
Jiang Zhou

Assessment of residual stresses in railroad rails without destructing the material plays a vital role in rail road safety. Ultrasonic testing is a commonly used nondestructive technique to determine the stresses in any structure. Ultrasonic stress evaluation technique is based on acoustoelastic effect which refers to the changes in the speed of the elastic wave propagation in a structure undergoing static elastic deformations. Critically refracted longitudinal (LCR) waves can be used as the propagating waves because it is a bulk wave and can reflect the surface and subsurface characteristics by the wave property linked to material elasticity. In this paper, a COMSOL Multiphysics module-based Finite Element Method (FEM) model is developed and numerical simulations are carried out for critically refracted longitudinal wave propagation in a railroad rail head for residual stresses. The time travel data results from this FEM Model are validated with reported experimental results.

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edgar V.M. Carrasco ◽  
Rejane C. Alves ◽  
Mônica A. Smits ◽  
Vinnicius D. Pizzol ◽  
Ana Lucia C. Oliveira ◽  
...  

Abstract The non-destructive wave propagation technique is used to estimate the wood’s modulus of elasticity. The propagation speed of ultrasonic waves is influenced by some factors, among them: the type of transducer used in the test, the form of coupling and the sensitivity of the transducers. The objective of the study was to evaluate the influence of the contact pressure of the transducers on the ultrasonic speed. Ninety-eight tests were carried out on specimens of the species Eucalyptus grandis, with dimensions of 120 × 120 × 50 mm. The calibration of the pressure exerted by the transducer was controlled by a pressure gauge using a previously calibrated load cell. The robust statistical analysis allowed to validate the experimental results and to obtain consistent conclusions. The results showed that the wave propagation speed is not influenced by the pressure exerted by the transducer.


2015 ◽  
Vol 1101 ◽  
pp. 471-479
Author(s):  
Georges Freiha ◽  
Hiba Othman ◽  
Michel Owayjan

The study of signals propagation inside porous media is an important field especially in the biomedical research related to compact bones. The purpose of this paper is to determine a mathematical formulation of the global coefficients of transmission and reflection of nondestructive ultrasonic waves in any bi-phase porous medium. Local coefficients of transmission and reflection on the interface of the porous medium will be determined based on a study of boundary conditions. The behavior of different waves inside the porous medium will be developed so that we can derive a new formulation of global coefficients that takes interior phenomena into consideration. Results are found independently of the geometrical and physical characteristics of the medium. Note that this study is based on normal incident ultrasonic wave propagation.


2021 ◽  
Author(s):  
Chennakesava Kadapa

AbstractThis paper presents a novel semi-implicit scheme for elastodynamics and wave propagation problems in nearly and truly incompressible material models. The proposed methodology is based on the efficient computation of the Schur complement for the mixed displacement-pressure formulation using a lumped mass matrix for the displacement field. By treating the deviatoric stress explicitly and the pressure field implicitly, the critical time step is made to be limited by shear wave speed rather than the bulk wave speed. The convergence of the proposed scheme is demonstrated by computing error norms for the recently proposed LBB-stable BT2/BT1 element. Using the numerical examples modelled with nearly and truly incompressible Neo-Hookean and Ogden material models, it is demonstrated that the proposed semi-implicit scheme yields significant computational benefits over the fully explicit and the fully implicit schemes for finite strain elastodynamics simulations involving incompressible materials. Finally, the applicability of the proposed scheme for wave propagation problems in nearly and truly incompressible material models is illustrated.


2021 ◽  
Author(s):  
◽  
Andrew Paul Dawson

<p>The influence of highly regular, anisotropic, microstructured materials on high frequency ultrasonic wave propagation was investigated in this work. Microstructure, often only treated as a source of scattering, significantly influences high frequency ultrasonic waves, resulting in unexpected guided wave modes. Tissues, such as skin or muscle, are treated as homogeneous by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized fibres. As these systems increase towards 100 MHz, these fibres will significantly influence propagating waves leading to guided wave modes. The effect of these modes on image quality must be considered. However, before studies can be undertaken on fibrous tissues, wave propagation in more ideal structures must be first understood. After the construction of a suitable high frequency ultrasound experimental system, finite element modelling and experimental characterisation of high frequency (20-200 MHz) ultrasonic waves in ideal, collinear, nanostructured alumina was carried out. These results revealed interesting waveguiding phenomena, and also identified the potential and significant advantages of using a microstructured material as an alternative acoustic matching layer in ultrasonic transducer design. Tailorable acoustic impedances were achieved from 4-17 MRayl, covering the impedance range of 7-12 MRayl most commonly required by transducer matching layers. Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded epoxy matching layer at the same frequency. Reception of ultrasound without the restriction of critical angles was also achieved, and no dispersion was observed in these structures (unlike current matching layers) until at least 200 MHz. In addition, to make a significant step forward towards high frequency tissue characterisation, novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed. These phantoms possessed acoustic and microstructural properties representative of fibrous tissues, much more realistic than currently used homogeneous phantoms. The attenuation coefficient measured along the direction of PVA alignment in an example phantom was 8 dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium. This method will allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue characterisation studies.</p>


2014 ◽  
Vol 214 ◽  
pp. 106-112 ◽  
Author(s):  
Adam Krzysztof Pilat

This elaboration presents a dynamic model of an Active Magnetic Bearing (AMB) developed in COMSOL Multiphysics. The electromagnetic field is calculated on the basis of Partial Differential Equations (PDEs). The calculated electromagnetic force is applied to the rotor, which is free to move. The Arbitrary Lagrangian-Eulerian (ALE) method for mesh deformation is applied to achieve rotor motion on the bearing plane. The planar rotor motion is described by a set of Ordinary Differential Equations (ODEs) solved in parallel to the electromagnetic field calculations. To enable rotor levitation, three local PD controllers are applied. The mathematical formulas of the control action are coded in the form of COMSOL equations and embedded into the rotor motion ODEs.


1972 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
S. M. Kokoshvili ◽  
P. P. Kalnin'

Sign in / Sign up

Export Citation Format

Share Document