matching layer
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 44)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shande Li ◽  
Xiaoxun Wu ◽  
Jinxiu Duan ◽  
Shuai Yuan ◽  
Cun Wang ◽  
...  

A composite matching layer composed of periodically arranged scatters with anti-reflection (AR) characteristics is proposed for broadband scattering reduction. The anti-reflection structure is composed of periodically arranged metal foam scatters, and it is the first attempt to be applied in the field of suppressing acoustic reflection. A complete theoretical model is developed to reveal the mechanism of scattering reduction and acoustic absorption based on effective medium theory and the transfer matrix method. The correctness and effectiveness of the theoretical model are verified by the finite element method (FEM), showing acoustic reflectance of less than 13.5% at broadband frequencies. The variation trends of reflectance are deeply investigated. The superior acoustic scattering reduction performance suggests that the matching layer possesses potential for acoustic imaging equipment and acoustic stealth.


2021 ◽  
Author(s):  
Shiva Hayati Raad

Absorbers are one of the key components in the realm of electromagnetic compatibility. Depending on the frequency range of interest, different types of absorbers can be utilized for this purpose. This chapter introduces the analysis and modeling of ferrite-based absorbers for low-frequency applications (below 1 GHz) and discusses the issues encountered in their installation, resulting in air gaps. Later, different kinds of pyramidal absorbers, commonly used in the broadband microwave frequency range (above 1 GHz), are presented, and analytical and numerical approaches for predicting their performance are reviewed. The combination of the ferrite tile and pyramidal dielectric absorbers is also provided. Then, some practical aspects of designing hybrid absorbers, including the influence of carbon loading and matching layer on their performance, are mentioned. Finally, the absorber operating frequency extension to the millimeter-wave spectrum using metamaterial structures or graphene material is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meng Xiang ◽  
Yu Xiao ◽  
Bin Xi ◽  
Yue Zhang ◽  
Shiyou Xu

A wideband, low cross-polarization, high-gain, and wide-angle scanning antenna array is presented in this paper. The antenna array contains 8 subarrays in the horizontal dimension, and each subarray contains 4 unit cells. A two-side printed dipole with an amendatory equivalent circuit model is adopted, and the metal vias are introduced in the element design to ameliorate the cross-polarization level. A radome, acting as the wide-angle impedance matching layer, is introduced to achieve wide-angle scanning. A prototype of a 4 × 8 array is fabricated and measured. The results show that the operating bandwidth of aperture efficiency (BWAE) above 60% is about 26.7% from 2.6 GHz to 3.4 GHz. The measured scanning loss in the H-plane is 2.7 dB when scanning up to 60° with active voltage standing wave ratio (VSWR) <3, and the gain can achieve 21 dB at 3 GHz with a cross-polarization level below −30 dB at all angles.


2021 ◽  
Vol 12 (2) ◽  
pp. 1051-1060
Author(s):  
Wonjun Seo ◽  
Seokyeon Im ◽  
Geesoo Lee

Abstract. As fossil fuel depletion and environmental pollution problems are becoming increasingly more serious, interest in the efficient use of natural resources and alternative energy is rapidly growing. In particular, interest in fuels stored as high-pressure gases such as natural gas and hydrogen is also rising. Ultrasonic waves show various received signals according to characteristics such as density of the medium and acoustic impedance. An experimental study on the detection of the micro-leakage of fuel stored as high-pressure gas was conducted based on the characteristics of ultrasonic waves. First, an ultrasonic sensor was manufactured by selecting the matching layer with consideration of the acoustic impedance. In the experiment, a mass flow controller (MFC) was attached to a perforated hole in the fabricated chamber to generate micro-leakage, and the signal from the receiving ultrasonic sensor was then collected. The envelope signal of the received ultrasonic sensor signal was analyzed through the Gaussian distribution method. The temperature inside the chamber and the received voltage decreased according to a similar trend and showed a nonlinear result. However, the phase of the received ultrasonic sensor signal showed a relatively linear result according to the internal pressure change. Micro-leakage could not be detected with only the received voltage seen by the ultrasonic sensor. Therefore, the phase shift of the receiving ultrasonic sensor can be used to detect micro-leakage in a high-pressure gas tank.


2021 ◽  
Author(s):  
◽  
Andrew Paul Dawson

<p>The influence of highly regular, anisotropic, microstructured materials on high frequency ultrasonic wave propagation was investigated in this work. Microstructure, often only treated as a source of scattering, significantly influences high frequency ultrasonic waves, resulting in unexpected guided wave modes. Tissues, such as skin or muscle, are treated as homogeneous by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized fibres. As these systems increase towards 100 MHz, these fibres will significantly influence propagating waves leading to guided wave modes. The effect of these modes on image quality must be considered. However, before studies can be undertaken on fibrous tissues, wave propagation in more ideal structures must be first understood. After the construction of a suitable high frequency ultrasound experimental system, finite element modelling and experimental characterisation of high frequency (20-200 MHz) ultrasonic waves in ideal, collinear, nanostructured alumina was carried out. These results revealed interesting waveguiding phenomena, and also identified the potential and significant advantages of using a microstructured material as an alternative acoustic matching layer in ultrasonic transducer design. Tailorable acoustic impedances were achieved from 4-17 MRayl, covering the impedance range of 7-12 MRayl most commonly required by transducer matching layers. Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded epoxy matching layer at the same frequency. Reception of ultrasound without the restriction of critical angles was also achieved, and no dispersion was observed in these structures (unlike current matching layers) until at least 200 MHz. In addition, to make a significant step forward towards high frequency tissue characterisation, novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed. These phantoms possessed acoustic and microstructural properties representative of fibrous tissues, much more realistic than currently used homogeneous phantoms. The attenuation coefficient measured along the direction of PVA alignment in an example phantom was 8 dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium. This method will allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue characterisation studies.</p>


2021 ◽  
Author(s):  
◽  
Andrew Paul Dawson

<p>The influence of highly regular, anisotropic, microstructured materials on high frequency ultrasonic wave propagation was investigated in this work. Microstructure, often only treated as a source of scattering, significantly influences high frequency ultrasonic waves, resulting in unexpected guided wave modes. Tissues, such as skin or muscle, are treated as homogeneous by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized fibres. As these systems increase towards 100 MHz, these fibres will significantly influence propagating waves leading to guided wave modes. The effect of these modes on image quality must be considered. However, before studies can be undertaken on fibrous tissues, wave propagation in more ideal structures must be first understood. After the construction of a suitable high frequency ultrasound experimental system, finite element modelling and experimental characterisation of high frequency (20-200 MHz) ultrasonic waves in ideal, collinear, nanostructured alumina was carried out. These results revealed interesting waveguiding phenomena, and also identified the potential and significant advantages of using a microstructured material as an alternative acoustic matching layer in ultrasonic transducer design. Tailorable acoustic impedances were achieved from 4-17 MRayl, covering the impedance range of 7-12 MRayl most commonly required by transducer matching layers. Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded epoxy matching layer at the same frequency. Reception of ultrasound without the restriction of critical angles was also achieved, and no dispersion was observed in these structures (unlike current matching layers) until at least 200 MHz. In addition, to make a significant step forward towards high frequency tissue characterisation, novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed. These phantoms possessed acoustic and microstructural properties representative of fibrous tissues, much more realistic than currently used homogeneous phantoms. The attenuation coefficient measured along the direction of PVA alignment in an example phantom was 8 dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium. This method will allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue characterisation studies.</p>


2021 ◽  
Vol 1198 (1) ◽  
pp. 012004
Author(s):  
K V Dorozhkin ◽  
V I Suslyaev ◽  
O V Kazmina ◽  
K E Matyskin ◽  
E Yu Korovin

Abstract The spectra of complex permittivity of the composites consisting of rubber silicone compound and electroconductive fine-dispersed silver-coated copper powder were investigated. To enhance the effectiveness of the composite interaction with microwaves and reduction of its weight and dimensions characteristics two and three-layer constructions were produced. Matching layers were made of foam glass material with addition SiC and Fe3O4.


2021 ◽  
pp. 108128652110408
Author(s):  
Joseph S. Pettigrew ◽  
Anthony J. Mulholland ◽  
Katherine M. M. Tant

This paper presents a framework for implementing a novel perfectly matching layer and infinite element (PML+IE) combination boundary condition for unbounded elastic wave problems in the time domain. To achieve this, traditional hexahedral finite elements are used to model wave propagation in the inner domain and IE test functions are implemented in the exterior domain. Two alternative implementations of the PML formulation are studied: the case with constant stretching in all three dimensions and the case with spatially dependent stretching along a single direction. The absorbing ability of the PML+IE formulation is demonstrated by the favourable comparison with the reflection coefficient for a plane wave incident on the boundary achieved using a finite-element-only approach where stress free boundary conditions are implemented at the domain edge. Values for the PML stretching function parameters are selected based on the minimisation of the reflected wave amplitude and it is shown that the same reduction in reflection amplitude can be achieved using the PML+IE approach with approximately half of the number of elements required in the finite-element-only approach.


2021 ◽  
Vol 263 (3) ◽  
pp. 3691-3698
Author(s):  
Lianchun Li ◽  
Yifan Diao ◽  
Haijun Wu ◽  
Weikang Jiang

Acoustic metamaterial layer-matched was designed to enhance ultrasound penetration through bones. The conventional ultrasound layer-matched, known as coupling agent, can only enhance the transmittance of ultrasound to soft biological media, such as cartilage and muscle, but cannot penetrate hard media, i.e. bone. An ultrasound layer-matched based on the impedance matching principle is presented to make ultrasound penetrate bone, which parameters are designed by acoustic metamaterial equivalent parameter technique. The ultrasound layer-matched is fabricated by 3D printing which can correct the aberrations of the bone. Some configurations are investigated by numerical simulation as well as experiments in the anechoic chamber. In particular, a bone matching layer can be designed optimally for the definite thickness of the bone and the definite operating frequency of the ultrasound probe, which enhanced ultrasound to penetrate both of the layer-matched and the bone with no echo. The results of experiments and simulations show that the proposed ultrasound layer-matched metamaterial can enhance the transmission efficiency of ultrasound to penetrate some hard biological media bones.


Sign in / Sign up

Export Citation Format

Share Document