Evaluation of Electron Beam Welded AISI 415 Stainless Steel

Author(s):  
Sheida Sarafan ◽  
Priti Wanjara ◽  
Henri Champliaud ◽  
Denis Thibault ◽  
Louis Mathieu

Sustainable manufacturing for assembly of turbines used in hydro power generation systems is driving the development of advanced technologies targeted to reduce life-cycle costs whilst assuring high performance over the prolonged product life-span. The turbine runner, a critical component in hydro power generation systems, requires weld assembly between the crown, band and blade sub-components. With due consideration of the thick-gauge sections involved, design and fabrication of a turbine runner that would integrate a high energy density technology for assembly, such as vacuum electron beam welding (EBW), has marked potential to achieve deep penetration with a low heat input, thereby rendering a weldment with narrow heat-affected zones (HAZ) and low distortion. In this study, the weldability of thick-gauge section AISI 415 martensitic stainless steels that are widely utilized in hydro turbine manufacturing was investigated by EBW. Particularly, bead-on-plate (BOP) welding of 88 mm-thick AISI 415 plate was carried out using a 42 kW high vacuum EBW system. The characteristics of the weldments, such as fusion zone (FZ) and HAZ microstructures and hardness were evaluated. The microstructural constituents across the weldment for process conditions that rendered near-complete penetration were studied and related to the microhardness evolution.

2013 ◽  
Vol 681 ◽  
pp. 314-318
Author(s):  
Yi Luo

A heat transfer model for vaporizing in vacuum electron beam welding on magnesium alloy is developed based on the laws of heat conduction and energy conservation. The vaporizing time of the main metal elements in AZ series magnesium alloy is calculated using the model. The results show that the vaporization of Mg element will precede the Zn element under the affecting of high energy density electron beam. The vaporizing times of alloying elements are not entirely dependent on the level of the boiling point, to a certain extent, also dependent on the thermal diffusivity and are closely related to the latent heat of vaporizing and melting of the materials. The change of beam spot diameter of electron beam also greatly alters the heat transfer characteristics of electron beam heat source beam. As the strong vaporizing effect of Mg element will occur within several milliseconds, the keyhole induced by the metal elements vaporizing is formed only within several milliseconds, but also the deep penetration welding effect of vacuum electron beam welding of magnesium alloys will be obtained in a very short period of time.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mohamed Sobih ◽  
Zuhair Elseddig ◽  
Khalid Almazy ◽  
Mohamed Sallam

Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing); and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW), which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.


Author(s):  
Aliza M. Willsey ◽  
Alexander R. Hartwell ◽  
Thomas S. Welles ◽  
Daekwon Park ◽  
Paul D. Ronney ◽  
...  

Abstract Micro combustion and power generation systems have increasingly been investigated as potential alternatives to electrochemical energy storage thanks to hydrocarbon fuel’s high energy density, but electrical componentry for pumping significantly limits the overall system efficiency. These components must be eliminated to allow for widespread adoption of micro combustion and power generation systems, and so the development of an alternative pumping technique is required. By taking advantage of the thermal transpiration phenomenon, small-scale pumping can be obtained in the presence of a temperature gradient. Initial work has been done to investigate the efficacy of this system, but a major issue has arisen due to the lack of low-cost thermal transpiration membranes with desirable pore characteristics. Research has revealed that vessel hyphae present in the roots of mushrooms (mycelium) form a network which could meet the requirements of an effective thermal transpiration membrane. Proper growing conditions could also allow for an application specific mycelium structure providing a highly effective and low-cost thermal transpiration membrane for micro combustion systems.


2011 ◽  
Vol 686 ◽  
pp. 355-360 ◽  
Author(s):  
Yi Luo ◽  
Jin He Liu ◽  
Chang Hua Du ◽  
Hui Bin Xu ◽  
Chun Tian Li

The process of vacuum electron beam welding is characterized by deep-penetration with the action of keyhole effect. The assumption of simple cylindrical physical model of keyhole is reasonable according to the thermal transfer of the keyhole effect during welding. There is an intensive evaporation arises from the front keyhole wall owing to the high energy density of electron beam. Therefore, an analysis model of heat transfer at the interface of vapor phase and front keyhole wall was proposed to the temperature calculation on the basis of heat transfer theory. The evaporation of the primary elements, which are Mg, Al, Zn and Mn in AZ series magnesium alloy, can be analyzed by the model, as well as the influence of keyhole radius varying on the temperature at vapor-solid interface offront keyhole wall. And dimensionless parameters are introduced to analyze the influence of the process condition on the thermal effect. The calculation results show that Mg and Zn are vulnerable to vaporize loss during the vacuum electron beam welding on AZ series magnesium alloy, and the evaporation of Mg occurs earlier than Zn. A longer electron beam acting duration and smaller keyhole size will increase the temperature of the front keyhole wall significantly, which has a considerable influence on the evaporation effect of the elements.


2012 ◽  
Vol 591-593 ◽  
pp. 507-514 ◽  
Author(s):  
Mohamed Sobih ◽  
Zuhair Elseddig ◽  
Khalid Almazy ◽  
Amro Youssef ◽  
Mohamed Sallam

Aluminum alloys are the subject of increasing interest in the automotive, as well as aircraft industries. Concerning the assembly, welding was extensively applied in the car industry. Nevertheless, welding defects generated during the process result in reduction in strength of both the weld; and heat affected zone which could limit its applications. Electron beam welding (EBW) has unique advantages over other traditional fusion welding methods due to its high-energy density, deep penetration, large depth-to-width ratio and the resulting very small heat affected zone. Optimization of EB welded joint of 2219 Al-alloy, from the yield strength, hardness and bead geometry point of view, is the topic of this study. Taguchi methodology with grey relation analysis has been applied to find the optimal welding parameters for welding of a sheet of the mentioned aluminum alloy with electron beam. The optimal welding parameters have been selected and verified experimentally.


2017 ◽  
Vol 884 ◽  
pp. 166-177 ◽  
Author(s):  
Giuliano Angella ◽  
Giuseppe Barbieri ◽  
Riccardo Donnini ◽  
Roberto Montanari ◽  
Alessandra Varone

Laser (LBW) and Electron Beam (EBW) welding have been used to produce seams on 2 mm thick plates of directionally solidified (DS) IN792 superalloy. For each welding technique a grid of samples were prepared by varying the pass speed (v) and keeping constant the other process parameters. The experiments were carried out at room temperature and with pre-heating (PHT) at 200 °C and 300 °C to find the best process conditions. The microstructural changes in molten zone (MZ) and heat affected zone (HAZ) were investigated finding that EBW guarantee a better quality and efficiency of the process without any macro defects. About the microstructure, the amount of ordered γ’ phase in the MZ is similar (≈ 25 %) for both welding techniques and quite lower than the value (70 %) of the original alloy.


Sign in / Sign up

Export Citation Format

Share Document