scholarly journals Compressed Sensing Techniques for Ultrasonic Imaging of Cargo Containers

Author(s):  
José Á. Martínez Lorenzo ◽  
Yuri Álvarez López

This contribution presents a compressed sensing (CS)-based ultrasonic imaging system for fast, low-cost inspection of metallic cargo containers. The idea is to detect the footprint of metallic objects within the container that can be used to conceal smuggling goods. This ultrasonic technology can complement currently deployed X-ray-based radiographic systems and millimeter-wave scanners, thus increasing the probability of detection. The proposed hardware consists of an array of acoustic transceivers that is attached to the metallic structure of the metallic cargo container to create a guided acoustic wave. Variations in the thickness of the metallic structure create reflections that can be located by backpropagating the measured reflected wave. Aiming to reduce the number of acoustic transceivers, this contribution evaluates the feasibility of applying CS techniques in the proposed acoustic imaging system. It has been observed that in the majority of the cases, the acoustic images retrieved by the cargo inspection system are sparse, that is, only those image pixels corresponding to discontinuities in the metallic plate (due to gaps, joints, placement of a metallic object on it) are different from zero. Thus, sparsity condition, which is one of the CS requirements, is satisfied for this particular application. A simulation-based example resembling a real case of cargo inspection is considered for validation purposes. A comparison between standard backpropagation and CS for different number of samples is presented, proving that CS is able to recover the acoustic image with as few as 10% of the samples required by Nyquist sampling rate.

Author(s):  
Guangzhi Dai ◽  
Zhiyong He ◽  
Hongwei Sun

Background: This study is carried out targeting the problem of slow response time and performance degradation of imaging system caused by large data of medical ultrasonic imaging. In view of the advantages of CS, it is applied to medical ultrasonic imaging to solve the above problems. Objective: Under the condition of satisfying the speed of ultrasound imaging, the quality of imaging can be further improved to provide the basis for accurate medical diagnosis. Methods: According to CS theory and the characteristics of the array ultrasonic imaging system, block compressed sensing ultrasonic imaging algorithm is proposed based on wavelet sparse representation. Results: Three kinds of observation matrices have been designed on the basis of the proposed algorithm, which can be selected to reduce the number of the linear array channels and the complexity of the ultrasonic imaging system to some extent. Conclusion: The corresponding simulation program is designed, and the result shows that this algorithm can greatly reduce the total data amount required by imaging and the number of data channels required for linear array transducer to receive data. The imaging effect has been greatly improved compared with that of the spatial frequency domain sparse algorithm.


2012 ◽  
Vol 256-259 ◽  
pp. 2328-2332
Author(s):  
Guang Zhi Dai ◽  
Wei Yi Lin ◽  
Guo Qiang Han

Industrial ultrasonic imaging system based on compressed sensing(IUICS),is still lack of available implementation, due to its difficulty in hardware realization.However,thanks to the recent finite rate of innovation and ultrasonic phased array technology,it is possible to apply Compressive Sensing framework to industrial ultrasonic imaging system.In this paper,we propose an available scheme of industrial ultrasonic imaging,which includes the sampling of signal,reconstruction algorithm and its physical structure, based on Compressed Sensing.


Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 162 ◽  
Author(s):  
Yuri López ◽  
José Lorenzo

2015 ◽  
Vol 38 (4) ◽  
pp. 285-297 ◽  
Author(s):  
Brent K. Hoffmeister ◽  
Morgan R. Smathers ◽  
Catherine J. Miller ◽  
Joseph A. McPherson ◽  
Cameron R. Thurston ◽  
...  

1980 ◽  
Vol 2 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Amin Hanafy ◽  
Mauro Zambuto

A two-step real time acoustic imaging system is presented. The system incorporates a novel acoustic image coupler which transfers an acoustical interference pattern from a water-bounded to an air-bounded surface with vibration amplitude amplification. An original technique termed step-biased real time holographic interferometry is used to convert the amplified mechanical vibration pattern, which carries all information about the insonified object, into a visual image with improved sensitivity.


Sign in / Sign up

Export Citation Format

Share Document