Effect of Temperature on the Evolved Microstructure During Laser Beam Forming of Sheet Steels

Author(s):  
Stephen Akinlabi ◽  
Madindwa Mashinini ◽  
Esther Akinlabi

Laser Beam Forming (LBF) being a novel technique and non-contact manufacturing process, employs laser beam as the tool of shaping and bending metal sheets into different shapes and curvatures for various applications. LBF is a high-temperature process, where rapid heating and cooling occurs causing microstructural changes like dynamic recrystallization and phase changes. The study becomes necessary to ensure that the structural integrity of the processed material is not compromised. Hence, the investigation focuses on the effect of temperature on the developed microstructure during the LBF process. The design of experiment was considered, using three levels and five factors. The experimentally measured curvatures were validated with the predicted measured curvatures, which were found to be in agreement. The result shows that the developed ferrite and pearlite grains were due to the heating and cooling. Furthermore, the average grain sizes at a low energy density of about 355°C and high energy density of about 747°C were found to be about 10 μm and 6 μm respectively. It is implied that the high temperature from the high laser energy aided the deformation of the grains significantly. However, such high temperature must be closely monitored so to avoid metallurgical notches in the processed component.

1992 ◽  
Vol 283 ◽  
Author(s):  
H. J. Kim ◽  
James S. Im ◽  
Michael O. Thompson

ABSTRACTUsing planar view transmission electron microscope (TEM) and transient reflectance (TR) analyses, we have investigated the excimer laser crystallization of amorphous silicon (a-Si) films on SiO2. Emphasis was placed on characterizing the microstructures of the single-shot irradiated materials, as a function of the energy density of the laser pulse and the temperature of the substrate. The dependence of the grain size and melt duration as a function of energy density revealed two major crystallization regimes. In the low energy density regime, the average grain size first increases gradually with increases in the laser energy density. In the high energy density regime, on the other hand, a very fine grained microstructure, which is relatively insensitive to variations in the laser energy density, is obtained. In addition, we have discovered that at the transition between these two regimes an extremely small experimental window exists, within which an exceedingly large grain-sized polycrystalline film is obtained. We suggest a liquid phase growth model for this phenomenon, which is based on the regrowth of crystals from the residual solid islands at the oxide interface.


2018 ◽  
Vol 57 (6) ◽  
pp. 1528-1531 ◽  
Author(s):  
Zhongbo Zhang ◽  
David H. Wang ◽  
Morton H. Litt ◽  
Loon-Seng Tan ◽  
Lei Zhu

2018 ◽  
Vol 130 (6) ◽  
pp. 1544-1547 ◽  
Author(s):  
Zhongbo Zhang ◽  
David H. Wang ◽  
Morton H. Litt ◽  
Loon-Seng Tan ◽  
Lei Zhu

Sign in / Sign up

Export Citation Format

Share Document