Thermodynamic Performance Study of the SOFC-GT-RC System Fueled by LNG With Zero-CO2 Emission

2018 ◽  
Author(s):  
Xiaoyu Yang ◽  
Hongbin Zhao

Distributed energy technology is an important developing direction of the future energy technology. This paper puts forward a distributed energy system named SOFC-GT-RC with LNG as fuel and recovering carbon dioxide. In the system, the cold energy of LNG can not only cool the compressor inlet air to reduce consumption of compressor work, but also to supply cold energy and to get zero-CO2 and other emissions. Based on mathematical model of each part, the thermodynamic calculation model of the whole system is built by FORTRAN, which is embedded in ASPEN PLUS. The results of calculation indicate the thermal efficiency and total power efficiency are 74.5% and 56.7% while the exergy efficiency is 61.8%. In addition, some operating parameters such as fuel utilization factor and fuel flow rate are selected. Based on these operating parameters, the new system thermodynamic performance is studied. The results point that this SOFC-GT-RC system fueled by LNG increases the total power, decreases waste of cold energy and the pollution of the environment, which would be an effective utilization style of energy in China’s LNG satellite stations.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Xiaoyu Yang ◽  
Hongbin Zhao ◽  
Qinlong Hou

Abstract Distributed energy technology is an important developing direction of the future energy technology. This paper puts forward a distributed energy system named SOFC–GT–RC (solid oxide fuel cell–gas turbine–recovering carbon dioxide) with liquefied natural gas (LNG) as fuel and recovering carbon dioxide. In the system, the cold energy of LNG can not only cool the compressor inlet air to reduce the consumption of compressor work, but also to supply cold energy and to recover CO2. Based on the mathematical model of each part, the thermodynamic calculation model of the whole system is built by fortran, which is embedded in aspen plus. The results of calculation indicate the thermal efficiency and total power efficiency are 74.5% and 56.7% while the exergy efficiency is 61.8%. In addition, some operating parameters such as fuel utilization factor and fuel flow rate are selected. Based on these operating parameters, the new system thermodynamic performance is studied. The results point that this SOFC–GT–RC system fueled by LNG increases the total power and decreases waste of cold energy and the pollution of the environment, which would be an effective utilization style of energy in China's LNG satellite stations.


2018 ◽  
Author(s):  
Qinlong Hou ◽  
Hongbin Zhao

This paper puts forward a new kind of SOFC - GT distributed energy system with methanol as fuel, through the absorption refrigeration (AR) and heat exchanger (HE) to recover the waste heat of GT. Based on thermodynamic analysis model, the performances, especially the exergy losses of the unit as well as its subsystems mainly including eight parts were obtained. The chemical energy of the fuel will directly be changed into electricity. Energy conversion efficiency can be as high as 85% above. The theoretical value has been paid attention by the researchers from all over the world. Comparative study in this paper, the simulation calculation and thermal performance analysis of the performance of two kinds of SOFC - GT is conducted. The results show that the total power generation efficiency of pure SOFC system, Case A and Case B are 19.28%, 55.79% and 52.26% respectively. The total thermal efficiency of Case A and B are 83.44 % and 82.79 % respectively. Additionally, the changing laws of total exergy loss, energy and exergy efficiency of integrated system at different loads also were studied. The results provide not only theory basis and scientific support for the design of the SOFC - GT distributed energy system with absorption refrigeration and heat exchanger recovering waste heat, but also a new scheme of energy saving and optimization for the units.


Author(s):  
W. E. Lear ◽  
J. F. Crittenden ◽  
J. R. Khan ◽  
S. A. Sherif

The High Pressure Regenerative Turbine Engine (HPRTE) has been investigated since the mid 1990s as the distributed energy system, among other applications, for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when combined with a Vapor Absorption Refrigeration System (VARS) in a novel way. The benefits includes increased efficiency, high part power efficiency, small lapse rate, compactness, low emissions, low air exhaust flows (which decrease filtration and ducting) and condensation of fresh water. The current paper describes the preliminary design and modeling of a modified version of this system applied to distributed energy, especially in regions which are prone to major grid interruptions due to hurricanes, under-capacity, or terrorism. In such cases, the distributed energy system should support most or all services within an isolated “island” so that the influence of the power outage is limited in scope. In addition, the paper will describe the possible production of ice, under emergency conditions, using the fresh condensate plus other water sources.


Author(s):  
William E. Lear ◽  
ChoonJae Ryu ◽  
John F. Crittenden ◽  
Aditya Srinivasan ◽  
William Ellis ◽  
...  

The Power, Water Extraction, and Refrigeration (PoWER) engine has been investigated for several years as a distributed energy system, among other applications, for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semi-closed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, less emissions, less air and exhaust flows (which decrease filtration and duct size) and condensation of fresh water. The current paper describes the preliminary design and modeling of a modified version of this system as applied to distributed energy, especially useful in regions which are prone to major grid interruptions due to hurricanes, under-capacity, or terrorism. In such cases, the distributed energy system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is limited in scope. The current paper describes the rather straightforward system modifications necessary for ice production. The primary focus of the paper is the use of this ice-making capacity to achieve significant load-leveling during the summer utility peak, hence reducing the electrical capacity requirements for the grid as well as load-leveling strategies.


Author(s):  
ChoonJae Ryu ◽  
William E. Lear ◽  
S. A. Sherif

The Power, Water Extraction, and Refrigeration (PoWER) engine has been investigated for several years as a distributed energy system, among other applications, for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semi-closed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, less emission, air, and exhaust flows (which decrease filtration and duct size) and condensation of fresh water. The present paper describes the preliminary design and modeling of a modified version of this system as applied to distributed energy, especially useful in regions which are prone to major grid interruptions due to hurricanes, under - capacity, or terrorism. In such cases, the distributed energy system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is limited in scope. This paper describes the rather straightforward system modifications necessary for ice production. The primary focus of the paper is the use of this ice-making capacity to achieve significant load-leveling during the summer utility peak, hence reducing the electrical capacity requirements for the grid as well as load-leveling strategies.


2020 ◽  
Vol 191 ◽  
pp. 01001
Author(s):  
Arriyadhul Qolbi

As the solar energy technology has been more competitive recently, it is common to see studies which examined how solar photovoltaic can technically emerge in the energy system in Indonesia. However, less research is conducted to study how the emergence of solar photovoltaic might impact different stakeholders in the electricity market in Indonesia. The increase of solar photovoltaic deployment will create winners and losers among the main stakeholders which are: the consumers, the national electricity company (PLN), independent power producers (IPP), and the Government of Indonesia. This paper asserts that consumers in Indonesia who do not have access to the grid will get benefits from the solar photovoltaic competitive costs. The consumers who have access to grid, however, will be indifferent in their position. In the longer term, these consumers will face the death spiral unless PLN, forced by the regulation, takes the loss. PLN will face bankruptcy due to the loss unless they invest in the distributed energy resources infrastructure. IPP will not gain in position due to unsupportive government regulations. Moreover, solar photovoltaic IPP will be vulnerable due to the policies that support imbalanced competition among renewable energies. On the other hand, the government will get some advantages that support their political agenda during the proliferation of solar photovoltaic.


Sign in / Sign up

Export Citation Format

Share Document