A Numerical Study on Rotational Tube Flaring Process

Author(s):  
Chetan P. Nikhare

A substantial increase in demand on the sheet metal part usage in aerospace and automotive industries is due to the increase in the sale of these products to ease the transportation. However, due to increase in the fuel prices and further environmental regulation had left no choice but to manufacture more fuel efficient and inexpensive vehicles. These heavy demands force researchers to think outside the box. There are many advanced manufacturing processes to produce optimized part are single and double point incremental forming, Reuleaux forming, hydroforming, explosive forming, electrically assisted manufacturing. In this project, a numerical study on rotational tube flaring process will be studied. Tube flaring is one of the most commonly used processes under tube forming. In this process, a conical tool contacts and forces the end of the tube while another end of the tube is fixed. This is called conventional flaring process. In contrast to this process, a tool rotational technique was utilized for this work. The rotation and the feed of the tool will be analyzed to have the best formability of the tool. The strain path and failure will be analyzed. The strain and thinning pattern will be discussed.

Author(s):  
Jacklyn Niebauer ◽  
Derek Shaffer ◽  
Ihab Ragai ◽  
John T. Roth

Automotive and aerospace industries are interested in implementing die-less forming processes in order to reduce part costs and the required forming energy. One method of die-less forming is incremental forming, in which a sheet metal part is formed; typically with a hemispherical tool that deforms material as it pushes into the material and passes along the surface to create the desired part geometry. One problem with incremental forming is global springback, which occurs after the part has been formed and is released from the forming fixture. This effect is caused by residual stresses that are created during part deformation and result in geometric inaccuracies after the clamping force has been released. In this paper, the effect of post-deformation applied direct current on the springback of pre-formed sheet metal will be investigated. This is a process is a type of electrically assisted manufacturing (EAM). This paper is a continuation of previous works presented at MSEC 2015–2016. The initial feasibility study described herein already achieves a springback reduction of 26.3% and is dependent on the regions of high stress concentration as well as current density. Future work will extend this reduction through further testing of complex configurations.


Author(s):  
Tyler J. Grimm ◽  
Amit B. Deshpande ◽  
Laine Mears ◽  
Jianxun Hu

Abstract Electrically-assisted manufacturing refers to the direct application of electrical current to a workpiece during a manufacturing process. This assistance results in several benefits such as flow stress reduction, increased elongation, reduced springback, increased diffusion, and increased precipitation control. These effects are also associated with traditional thermal assistance. However, for over half a decade it has been argued whether or not these observed effects are due to electroplasticity, a term which describes effects that cannot be fully explained through resistive heating. Several theories have been proposed as to the mechanism responsible for these purported athermal effects. Conflicting results within literature have enabled this debate over electroplasticity since its discovery in the mid 20th century. While the effects of electrically-assisted manufacturing are clearly characterized throughout literature, there is a lack of research related to control systems which may be used to take advantage of its effects. Typically, control systems are developed using an empirical approach, requiring extensive testing in order to fully characterize the stress-strain behavior at all conditions. Additionally, current research has primarily focused on reducing flow stresses during electrically-assisted processes without regard for the strength of the material subsequent to forming. Therefore, there is a strong need for a control system which can quickly be deployed for new materials and does not significantly reduce the subsequent strength of the material. Herein, a novel control approach is developed in which electrical pulses are triggered by a predetermined stress level. This stress value would be set according to the manufacturer’s stamping die strength. Once the material reaches this stress value, current is deployed until a minimum stress level is reached. At that point, the electricity is turned off and the material allowed to cool; at that stage the stress begins to elevate and the cycle continues. This approach does not require extensive pre-testing and is robust to a range of strain rate. This type of implementation can also be adapted to different levels of capability. For example, since the current is controlled by force and not by time, a low-current power supply will stay on for each pulse longer than a power supply with higher capabilities; however, each will achieve a similar effect. This study investigates the effect of several different minimum stress levels and strain rates. The strain rates chosen are relatively similar to common stamping process. This system was experimentally tested using 1018 CR steel. This control approach was found to be a successful method of maintaining a desired stress level.


Author(s):  
Wesley A. Salandro ◽  
Joshua J. Jones ◽  
Cristina Bunget ◽  
Laine Mears ◽  
John T. Roth

Author(s):  
Brandt J. Ruszkiewicz ◽  
Tyler Grimm ◽  
Ihab Ragai ◽  
Laine Mears ◽  
John T. Roth

Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.


Author(s):  
Yifan Men ◽  
Jason B. Martz ◽  
Eric Curtis ◽  
Guoming G. Zhu

Abstract Modern diesel engines are normally turbocharged in order to achieve desired fuel economy and meet emission requirements. The well-known “turbo-lag”, delayed engine torque response to driver’s demand, is the main disadvantage for turbocharged engines operated under transient conditions. In addition, at low engine speed, the peak engine output torque is heavily limited by the available turbine energy. As a result, turbocharged engines have degraded peak torque at low speed and slow transient responses in general. Various technologies (variable geometry turbine, electrically assisted turbocharger, hydraulically assisted turbocharger, etc.) have been developed to improve transient response and low-speed torque performance. This paper presents a numerical study of an electrically assisted boosting (eBoost) system for a turbocharged diesel engine through 1-D simulations. This study focuses on two main areas: the electrical compensation at steady-state and turbo-lag reduction under transient operation. It is shown that the eBoost system is capable of increasing engine fuel economy at mid-speed and greatly improving low-speed peak torque. In addition, the eBoost system improves engine transient performance by reducing response time up to 60%.


2020 ◽  
Vol 48 ◽  
pp. 349-357
Author(s):  
Christopher D. Lang ◽  
C.R. Hasbrouck ◽  
Austin S. Hankey ◽  
Paul C. Lynch ◽  
Bryan D. Allison ◽  
...  

2013 ◽  
Author(s):  
Rong Fan ◽  
Man-Kwan Ng ◽  
Dongkai Xu ◽  
Ping Hu ◽  
Jian Cao

Author(s):  
Timothy A. McNeal ◽  
Jeffrey A. Beers ◽  
John T. Roth

In today’s industry, the need for lightweight alloys with high strength properties is growing. More specifically, magnesium alloys are in high demand. Unfortunately, magnesium’s limited formability hinders its broad range applicability. Previous research has discovered that the tensile formability of this alloy can be increased using electrical pulsing during the deformation process, referred to as Electrically-Assisted Manufacturing (EAM). Although this method increases a material’s formability (i.e. lowers flow stress, increases elongation, and reduces springback), a detailed analysis is required to further evaluate the effects of electricity on the material’s microstructure. The research herein will examine the microstructure of Magnesium AZ31B-O specimens that were deformed under uniaxial tension while electrically pulsed with various pulsing parameters (i.e. different current density/pulse duration combinations). This microstructural analysis will focus on how EAM affected grain size, grain orientation, and twinning. The microstructure of the following different specimen types will be compared: deformed EAM specimens, deformed non-pulsed baseline specimens, and undeformed non-pulsed “as received” specimens.


2014 ◽  
Vol 599-601 ◽  
pp. 413-416 ◽  
Author(s):  
Hu Zhu ◽  
Jin Ju ◽  
Yi Bo Liu

For the purpose of the fabrication of the sheet-metal parts with non-horizontal end face using the sheet metal CNC incremental forming technology, two kinds of path generating methods, namely the level path perpendicular to Z axis method and the equidistant path parallel to sheet metal are proposed in this paper. Both of the paths are generated by Visual C++ and OpenGL graphics library, the effect of the two kinds of forming paths to the forming quality of the sheet part with non-horizontal end face is researched using the finite element analysis method in this paper.


Sign in / Sign up

Export Citation Format

Share Document