A Numerical Study of an Electrically Assisted Boosting System for Turbocharged Diesel Engines

Author(s):  
Yifan Men ◽  
Jason B. Martz ◽  
Eric Curtis ◽  
Guoming G. Zhu

Abstract Modern diesel engines are normally turbocharged in order to achieve desired fuel economy and meet emission requirements. The well-known “turbo-lag”, delayed engine torque response to driver’s demand, is the main disadvantage for turbocharged engines operated under transient conditions. In addition, at low engine speed, the peak engine output torque is heavily limited by the available turbine energy. As a result, turbocharged engines have degraded peak torque at low speed and slow transient responses in general. Various technologies (variable geometry turbine, electrically assisted turbocharger, hydraulically assisted turbocharger, etc.) have been developed to improve transient response and low-speed torque performance. This paper presents a numerical study of an electrically assisted boosting (eBoost) system for a turbocharged diesel engine through 1-D simulations. This study focuses on two main areas: the electrical compensation at steady-state and turbo-lag reduction under transient operation. It is shown that the eBoost system is capable of increasing engine fuel economy at mid-speed and greatly improving low-speed peak torque. In addition, the eBoost system improves engine transient performance by reducing response time up to 60%.


Fuel ◽  
2021 ◽  
Vol 294 ◽  
pp. 120501
Author(s):  
Qi Lan ◽  
Liyun Fan ◽  
Yun Bai ◽  
Yuanqi Gu ◽  
Liming Wen


2017 ◽  
Vol 46 (1) ◽  
pp. 49-53
Author(s):  
R. Bhaskar Reddy ◽  
S. Sunilkumar Reddy

Diesel engines are being used extensively for fuel economy but due to gradual depletion of Petroleum resources and increase in exhaust emissions, there is an urgent need for suitable alternative fuels for the diesel engines. As our country is an agricultural country, if the alternate fuels are produced by our farmers it will be beneficial for the country and the farmers also. In recent studies, researchers studied various vegetable oils like canola oil, alovera oil, soya been oil, flaxseed oil and hone oil etc. Out of all flaxseed oil play an important role as an alternative fuel. But the properties of flaxseed oil are not suitable for the usage in the existing diesel engines without blending with diesel fuel. The performance of the engine depends on the combustion phenomenon and it further depends on the amount of heat retained in the combustion chamber. Hence the present work is planned accordingly to develop an insulated engine by coating the piston with TIO2material. So that more amount of heat will be retained in the combustion chamber which aids the combustion. Further the performance of flaxseedbiodiesel blend namely B10, B20, B30 and B40 are tested and the results are mentioned accordingly.



1943 ◽  
Vol 10 (1) ◽  
pp. A33-A48
Author(s):  
Frederic P. Porter

Abstract Engine torque curves depend upon the combined effects of gas pressures, inertia forces, and weights. Tables for the harmonic coefficients of the torque due to inertia and weight effects are given for a wide range of crank-to-connecting-rod ratios. Families of indicator diagrams, representative of various types of engines, are shown and tables of the harmonic coefficients of the resulting torques are given. The types of engines considered are two-cycle gas, semi-Diesel, single-acting Diesel, double-acting Diesel, two-shaft opposed-piston Diesel, and four-cycle gasoline and Diesel engines.





2017 ◽  
Author(s):  
Apostolos Karvountzis-Kontakiotis ◽  
Apostolos Pesiridis ◽  
Hua Zhao ◽  
Fuhaid Alshammari ◽  
Benjamin Franchetti ◽  
...  


2020 ◽  
Vol 94 (1) ◽  
pp. 143-154
Author(s):  
Khudyakov S. A. ◽  
Ignatenko A.V.
Keyword(s):  




2020 ◽  
Author(s):  
Rehab Metwally ◽  
hassan Abu Hashish ◽  
Haitham Abd El-Samad ◽  
Mostafa Awad ◽  
Ghada Kadry

Abstract Background: The world depends almost on fossil fuels. This leads to depletion of oil and an increase in environmental pollution. Therefore, the researchers search to find alternative fuels. Waste cooking oil (WCO) was selected as feedstock for biodiesel production to eliminates the pollution problems. The agricultural waste is very big and without cost, this leads to the use of the rice straw in preparing a catalyst for biodiesel production. Results: The reusability of the acidic catalyst confirmed that the conversion efficiency was high until after 8 cycles of the production. The highest conversion efficiency of the converting WCO extended to 90.38% with 92.5% maximum mass yield and methyl ester content 97.7% wt. at the optimized conditions. The result was indicating that B15 is the best blend for thermal efficiency and specific fuel consumption. All emission concentrations decrease with increasing the engine load, especially for B15 fuels compared to the diesel oil.Conclusion: The novelty of this paper is assessing the methyl esters from the local WCO as an alternative fuel for diesel engines using a heterogeneous catalyst based on the agricultural waste. The performance of the diesel engines and its exhaust emissions have been experimentally investigated with the produced biodiesel of WCO as a blend (B10, B15, and B20) compared to the diesel.



Sign in / Sign up

Export Citation Format

Share Document