Deep Convolutional Neural Network for Early Disk Crack Diagnosis Under Variable Speed

Author(s):  
Ruonan Liu ◽  
Ruqiang Yan ◽  
Meng Ma ◽  
Xuefeng Chen

Aero engine is essentially the heart of an airplane. However, the high temperature and high pressure working environment of the aero engine can easily lead to fatigue cracks in turbine disks, and result in serious accidents. Therefore, early disk crack diagnosis is very important to guarantee safe flight of the airplane and reduce its maintenance cost, which, however, is challenging due to the difficulty in building a complex physical model under variable operating speeds. To tackle this problem, a novel deep convolutional neural network (CNN)-based method is proposed for early disk crack diagnosis. CNN, as one of the deep learning structures, can learn deep-seated features directly and automatically from the raw data without the need of physical model or prior knowledge. It shows the potential to deal with the challenge of early disk crack diagnosis. Since the proposed diagnosis method is signal-level, the collected vibration signals can be input into the CNN architecture directly without the need of feature extractor. In this paper, the vibration signals at both the beginning and the end of the test are used for training the CNN model, then the rest signals are input into the trained model as test data to diagnose when the incipient disk crack is generated. Experimental study conducted on the fatigue test of a real turbine disk has proved the effectiveness and robustness of the proposed method for early disk crack diagnosis. Meanwhile, comparison study with some state-of-the-art methods is also performed, and further highlights the superiority of the proposed method.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiwen Huang ◽  
Jianmin Zhu ◽  
Jingtao Lei ◽  
Xiaoru Li ◽  
Fengqing Tian

Tool wear monitoring is essential in precision manufacturing to improve surface quality, increase machining efficiency, and reduce manufacturing cost. Although tool wear can be reflected by measurable signals in automatic machining operations, with the increase of collected data, features are manually extracted and optimized, which lowers monitoring efficiency and increases prediction error. For addressing the aforementioned problems, this paper proposes a tool wear monitoring method using vibration signal based on short-time Fourier transform (STFT) and deep convolutional neural network (DCNN) in milling operations. First, the image representation of acquired vibration signals is obtained based on STFT, and then the DCNN model is designed to establish the relationship between obtained time-frequency maps and tool wear, which performs adaptive feature extraction and automatic tool wear prediction. Moreover, this method is demonstrated by employing three tool wear experimental datasets collected from three-flute ball nose tungsten carbide cutter of a high-speed CNC machine under dry milling. Finally, the experimental results prove that the proposed method is more accurate and relatively reliable than other compared methods.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


Sign in / Sign up

Export Citation Format

Share Document