Area-Arrayed Graphene Nano-Ribbon-Base Strain Sensor

Author(s):  
Ryohei Nakagawa ◽  
Zhi Wang ◽  
Ken Suzuki

Health monitoring devices using a strain sensor, which shows high sensitivity and large deformability, are strongly demanded due to further aging of society with fewer children. Conventional strain sensors, such as metallic strain gauges and semiconductive strain sensors, however, aren’t applicable to health monitoring because of their low sensitivity and deformability. In this study, fundamental design of area-arrayed graphene nano-ribbon (GNR) strain senor was proposed in order to fabricate next-generation strain sensor. The sensor was consisted of two sections, which are stress concentration section and stress detecting section. This structure can take full advantage of GNR’s properties. Moreover, high quality GNR fabrication process, which is one of the important process in the sensor, was developed by applying CVD (Chemical Vapor Deposition) method. Top-down approach was applied to fabricate the GNR. At first, in order to synthesize a high-quality graphene sheet, acetylene-based LPCVD (low pressure chemical vapor deposition) using a closed Cu foil was employed. After that, graphene was transferred silicon substrate and the quality was evaluated. The high quality graphene was transferred on the soft PDMS substrate and metallic electrodes were fabricated by applying MEMS technology. Area-arrayed fine pin structure was fabricated by using hard PDMS as a stress-concentration section. Finally, both sections were integrated to form a highly sensitive and large deformable pressure sensor. The strain sensitivity of the GNR-base sensor was also evaluated.

2008 ◽  
Vol 1144 ◽  
Author(s):  
Yanbo Li ◽  
Ippei Nagatomo ◽  
Ryohei Uchino ◽  
Ichiro Yamada ◽  
Jean-Jacques Delaunay

ABSTRACTZnO nanowires are directly integrated into a working device by a single-step chemical vapor deposition (CVD) method. Gold catalyst is patterned on a quartz glass substrate using a comb-shaped shadow mask and then ZnO is grown on the patterned substrate by CVD. Thick ZnO layers formed on the gold-patterned areas serve as native electrodes. Ultra-long (˜100 μm) ZnO nanowires grown across the gap between the ZnO electrodes and the nanowires serve as the sensing elements of the device. The device exhibits high sensitivity and fast response to UV illumination in air. Our method can be used to fabricate other metal oxide semiconductor bridging nanowire devices, which have promising applications in photodetection and gas sensing.


2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhenzhen Tian ◽  
Xiaoming Yuan ◽  
Ziran Zhang ◽  
Wuao Jia ◽  
Jian Zhou ◽  
...  

AbstractGrowth of high-quality III–V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III–V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III–V nanowire growth studies provide an excellent example to guide the nanowire growth.


Sign in / Sign up

Export Citation Format

Share Document