Virtual Interaction Between Patients and Occupational Therapists Using an Assistive Robotic Device With Cyber-Physical System

Author(s):  
Marvin H. Cheng ◽  
Po-Lin Huang ◽  
Hao-Chuan Chu ◽  
Li-Han Peng ◽  
Ezzat Bakhoum

In this paper, we propose to design, develop, and study a cyber-physical system that enables patients and therapists to virtually interact for rehabilitation activities with assistive robotic devices. The targeted users of this system are post-stroke patients. On the patient’s side, an assistive robotic device can generate the force that the therapist applies to the patient. On the therapist’s side, another robotic device can reproduce the responsive force generated by the patient. With this system, the interaction can be virtually established. In addition, by integrating real human trajectories, the proposed assistive robotic system can help patients to perform rehabilitation activities in their own pace. Such an assistive robotic system and virtual interacting scheme can minimize both patient’s and therapist’s traveling time. The assistive functions of this light weight design can also help patients to in their ADLs.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1945
Author(s):  
Hsu-Chih Huang ◽  
Jing-Jun Xu

This paper contributes to the development of evolutionary machine learning (EML) for optimal polar-space fuzzy control of cyber-physical Mecanum vehicles using the flower pollination algorithm (FPA). The metaheuristic FPA is utilized to design optimal fuzzy systems, called FPA-fuzzy. In this hybrid computation, both the fuzzy structure and the number of IF–THEN rules are optimized through the FPA evolutionary process. This approach overcomes the drawback of the structure tuning problem in conventional fuzzy systems. After deriving the polar-space kinematics model of Mecanum vehicles, an optimal EML FPA-fuzzy online control scheme is synthesized, and the global stability is proven via Lyapunov theory. An embedded cyber-physical robotic system is then constructed using the typical 5C strategy. The proposed FPA-fuzzy computation collaborates with the advanced sensors and actuators of Mecanum vehicles to design a cyber-physical robotic system. Compared with conventional Cartesian-space control methods, the proposed EML FPA-fuzzy has the advantages of metaheuristics, fuzzy online control, and cyber-physical system design in polar coordinates. Finally, the mechatronic design and experimental setup of a Mecanum vehicle cyber-physical system is constructed. Through experimental results and comparative works, the effectiveness and merit of the proposed methods are validated. The proposed EML FPA-fuzzy control approach has theoretical and practice significance in terms of its real-time capability, online parameter tuning, convergent behavior, and hybrid artificial intelligence.


Author(s):  
Zhongkui Wang ◽  
◽  
Masao Shimizu ◽  
Sadao Kawamura

Population aging in Japan is exacerbating the labor shortage problem in food industry, agriculture, and other labor-intensive industries. Recently, automation and IoT technologies become highly demanded in such industries for improving productivity and labor-saving. This article reviews the challenges of introducing automation in food industry and proposes a cyber physical system framework for applications in food industry. For facilitating the application of IoT technologies, we propose a module integrated with multiple sensors for monitoring the environment and the robotic system conditions. Further, a network platform is proposed to connect the physical space (robotic system) and the cyber space (cloud). Two examples of robotic systems for automatic tempura plating and presentation and chopped green onion topping are presented to demonstrate the capabilities of applying such technologies in food industry.


Author(s):  
Vo Que Son ◽  
Do Tan A

Sensing, distributed computation and wireless communication are the essential building components of a Cyber-Physical System (CPS). Having many advantages such as mobility, low power, multi-hop routing, low latency, self-administration, utonomous data acquisition, and fault tolerance, Wireless Sensor Networks (WSNs) have gone beyond the scope of monitoring the environment and can be a way to support CPS. This paper presents the design, deployment, and empirical study of an eHealth system, which can remotely monitor vital signs from patients such as body temperature, blood pressure, SPO2, and heart rate. The primary contribution of this paper is the measurements of the proposed eHealth device that assesses the feasibility of WSNs for patient monitoring in hospitals in two aspects of communication and clinical sensing. Moreover, both simulation and experiment are used to investigate the performance of the design in many aspects such as networking reliability, sensing reliability, or end-to-end delay. The results show that the network achieved high reliability - nearly 97% while the sensing reliability of the vital signs can be obtained at approximately 98%. This indicates the feasibility and promise of using WSNs for continuous patient monitoring and clinical worsening detection in general hospital units.


Author(s):  
Cunbin Li ◽  
Ding Liu ◽  
Yi Wang ◽  
Chunyan Liang

AbstractAdvanced grid technology represented by smart grid and energy internet is the core feature of the next-generation power grid. The next-generation power grid will be a large-scale cyber-physical system (CPS), which will have a higher level of risk management due to its flexibility in sensing and control. This paper explains the methods and results of a study on grid CPS’s behavior after risk. Firstly, a behavior model based on hybrid automata is built to simulate grid CPS’s risk decisions. Then, a GCPS risk transfer model based on cooperative game theory is built. The model allows decisions to ignore complex network structures. On this basis, a modified applicant-proposing algorithm to achieve risk optimum is proposed. The risk management model proposed in this paper can provide references for power generation and transmission decision after risk as well as risk aversion, an empirical study in north China verifies its validity.


Sign in / Sign up

Export Citation Format

Share Document