Time-Domain Spectral Element Simulation of Lamb Wave Time Reversal Method for Detecting a Breathing Crack in a Plate

Author(s):  
Zexing Yu ◽  
Fei Du ◽  
Chao Xu

Abstract Lamb wave is considered as an appropriate approach to detect the cracks in structures. This paper combines an efficient time-domain spectral finite element with time reversal method to develop an efficient breathing crack detection method. In this regard, Gauss-Lobatto-Legendre quadrature rules and penalty function method are carried out to construct an effective and accurate approach. Comparing the computation scales and results of this method and traditional finite element method, the validity and superiority of the proposed model is stressed. The reconstructed signals of two scenarios, intact and impaired structures, are captured. It is concluded that, this approach is capable of detecting breathing cracks. In addition, the influences of the relative depth of the notch and incident region are studied. This research may provide the guidance for experiment configuration and the further study.

Author(s):  
Junzhen Wang ◽  
Yanfeng Shen

Abstract This paper presents a numerical study on nonlinear Lamb wave time reversing for fatigue crack detection. An analytical framework is initially presented, modeling Lamb wave generation, propagation, wave crack linear and nonlinear interaction, and reception. Subsequently, a 3D transient dynamic coupled-field finite element model is constructed to simulate the pitch-catch procedure in an aluminum plate using the commercial finite element software (ANSYS). The excitation frequency is carefully selected, where only single Lamb wave mode will be generated by the Piezoelectric Wafer Active Sensor (PWAS). The fatigue cracks are modelled nucleating from both sides of a rivet hole. In addition, contact dynamics are considered to capture the nonlinear interactions between guided waves and the fatigue cracks, which would induce Contact Acoustic Nonlinearity (CAN) into the guided waves. Then the conventional and virtual time reversal methods are realized by finite element simulation. Advanced signal processing techniques are used to extract the distinctive nonlinear features. Via the Fast Fourier Transform (FFT) and time-frequency spectral analysis, nonlinear superharmonic components are observed. The reconstructed signals attained from the conventional and virtual time reversal methods are compared and analyzed. Finally, various Damage Indices (DIs), based on the difference between the reconstructed signal and the excitation waveform as well as the amplitude ratio between the superharmonic and the fundamental frequency components are adopted to evaluate the fatigue crack severity. The DIs could provide quantitative diagnostic information for fatigue crack detection. This paper finishes with summary, concluding remarks, and suggestions for future work.


2020 ◽  
Vol 20 (10) ◽  
pp. 2042005
Author(s):  
Shuai He ◽  
Ching-Tai Ng ◽  
Carman Yeung

This study proposes a time-domain spectral finite element (SFE) method for simulating the second harmonic generation (SHG) of nonlinear guided wave due to material, geometric and contact nonlinearities in beams. The time-domain SFE method is developed based on the Mindlin–Hermann rod and Timoshenko beam theory. The material and geometric nonlinearities are modeled by adapting the constitutive relation between stress and strain using a second-order approximation. The contact nonlinearity induced by breathing crack is simulated by bilinear crack mechanism. The material and geometric nonlinearities of the SFE model are validated analytically and the contact nonlinearity is verified numerically using three-dimensional (3D) finite element (FE) simulation. There is good agreement between the analytical, numerical and SFE results, demonstrating the accuracy of the proposed method. Numerical case studies are conducted to investigate the influence of number of cycles and amplitude of the excitation signal on the SHG and its performance in damage detection. The results show that the amplitude of the SHG increases with the numbers of cycles and amplitude of the excitation signal. The amplitudes of the SHG due to material and geometric nonlinearities are also compared with the contact nonlinearity when a breathing crack exists in the beam. It shows that the material and geometric nonlinearities have much less contribution to the SHG than the contact nonlinearity. In addition, the SHG can accurately determine the crack location without using the reference data. Overall, the findings of this study help further advance the use of SHG for damage detection.


2016 ◽  
Vol 28 (4) ◽  
pp. 488-506 ◽  
Author(s):  
Christoforos S Rekatsinas ◽  
Dimitris A Saravanos

A new explicit, two-dimensional plane strain, time domain spectral finite element is developed to enhance the simulation of guided waves generated by active piezoelectric sensors in laminated composite strips. A new multi-field layerwise theory is formulated for composite laminates with piezoelectric actuators and sensors which captures straight-crested symmetric and anti-symmetric Lamb waves. Third-order Hermite polynomial splines are employed for the approximation of displacements and electric potential through the thickness, and the piezoelectric actuators and sensors are physically modeled through coupled electromechanical governing equations. A multi-node finite element formulation is presented entailing displacement and electric degrees of freedom at nodes collocated with Gauss–Lobatto–Legendre integration points. Stiffness, diagonal mass, piezoelectric, and electric permittivity matrices are described, and the coupled transient electromechanical response is predicted by a properly formulated explicit time integration scheme. The numerical results of a nine-node time domain spectral finite element are correlated with the reported numerical results and with measured Lamb wave data generated by piezoceramic active sensor pairs in carbon/epoxy plate strips. Important effects introduced by the stiffness and mass of the active actuator/sensor system on Lamb wave propagation are captured by the developed finite element and quantified.


2016 ◽  
Author(s):  
Χριστόφορος Ρεκατσίνας

Ο σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη καινοτόμων θεωριών διάτμησης για την ανάλυση διαστρωματώσεων από σύνθετα υλικά, καθώς και μεθόδων πεπερασμένων στοιχείων ικανών να προβλέπουν την κυματική διάδοση στο εσωτερικό δοκών και πλακών από σύνθετα υλικά, η διέγερση των οποίων έχει προέλθει από την φυσική παρουσία ενεργών πιεζοηλεκτρικών αισθητηρίων. Η παρούσα διατριβή μπορεί να υποκατηγοριοποιηθεί σε τρεις επιμέρους τομείς. Ο πρώτος από τους οποίους έχει ως θέμα την ανάπτυξη θεωριών ανώτερης τάξης, μέσω των οποίων μπορεί να προσομοιωθεί επιτυχώς η κυματική διάδοση σε πλάκες κατασκευασμένες από σύνθετα υλικά, όπως επίσης σε πλάκες με έντονα ανομοιογενής στρώσεις τύπου “sandwich”. Το δεύτερο κομμάτι της διατριβής παρουσιάζει τη μεθοδολογία για την ανάπτυξη φασματικών πεπερασμένων στοιχείων στο πεδίο του χρόνου, ενώ το τρίτο και τελευταίο κομμάτι ασχολείται με τα πειράματα που πραγματοποιήθηκαν καθ’ όλην τη διάρκεια της διδακτορικής διατριβής, με απώτερο σκοπό την επιβεβαίωση των καινοτόμων στοιχείων της διατριβής μέσω της ταυτοποίησης των αποτελεσμάτων.Οι κινηματικές υποθέσεις που αναπτύχθηκαν με σκοπό την προσομοίωση της κυματικής διάδοσης σε σύνθετες κατασκευές, εμπνεύστηκαν από τη λύση της εξίσωσης διάδοσης κύματος των Rayleigh-Lamb, οποία προϋποθέτει ότι οι μετατοπίσεις ισούνται με το άθροισμα ημιτόνων και συνημίτονων. Στη συνέχεια με τη βοήθεια του αναπτύγματος Taylor εισήχθησαν μη-γραμμικοί όροι στην αξονική και εγκάρσια μετατόπιση, μια καινοτομία που ευνοεί την έγκυρη πρόβλεψη των συμμετρικών και αντισυμμετρικών τύπου κυμάτων. Στη συνέχεια αφού οι όροι τρίτης τάξης αποδείχθηκαν αρκετοί για την πρόβλεψη της κυματικής διάδοσης σε πλάκες και δοκούς από σύνθετα υλικά, προτάθηκε μια καινούργια θεωρία ανώτερης τάξης, στην οποία χρησιμοποιούνται ως συναρτήσεις ενδοπαρεμβολής Ερμιτιανά πολυώνυμα τρίτης τάξης. Η συγκεκριμένη θεωρία προϋποθέτει ως βαθμούς ελευθερίας τις μετατοπίσεις και αντίστοιχες περιστροφές τους, των πάνω και κάτω διακριτών επιφανειών της σύνθετης στρώσης. Μια μοναδική ιδιότητα η οποία επιτρέπει την επέκταση από θεωρία μονής στρώσης σε θεωρία διακριτών στρωμάτων, δίνοντας τη δυνατότητα προσομοίωσης πολύπλοκων διαστρωματώσεων, καθώς και την ένωση τομέων της κατασκευής με διαφορετικό αριθμό διακριτών στρωμάτων. Ένα χαρακτηριστικό παράδειγμα είναι η παρουσία ενός πιεζοηλεκτρικού διεγέρτη περιορισμένο σε μια διακριτή επιφάνεια της κατασκευής, κατά συνέπεια με δεύτερη διακριτή στρώση πρέπει να εισαχθεί μόνο σε αυτή τη διακριτή επιφάνεια.Στο δεύτερο μέρος της παρούσας διατριβής παρουσιάζεται η ενοποίηση των προαναφερθέντων θεριών με την ανάπτυξη φασματικών πεπερασμένων στοιχείων στο πεδίο του χρόνου. Τα χρονικά φασματικά πεπερασμένα στοιχεία έχουν ως βάση πολυωνυμικές συναρτήσεις μορφής ανώτερης τάξης τύπου Lagrange. Η ανώτερη τάξη των συναρτήσεων μορφής επιτρέπει τη δημιουργία πολύκομβων φασματικών πεπερασμένων στοιχείων, δίνοντας την ευχέρεια προσομοίωσης υψίσυχνων σημάτων με πολύ μικρό μήκος κύματος με τη χρήση πολύ λίγων φασματικών πεπερασμένων στοιχείων. Επιπλέον οι κόμβοι των φασματικών πεπερασμένων στοιχείων συμπίπτουν με τα σημεία ολοκλήρωσης των Gauss-Lobbato-Legendre, βοηθώντας στη σύνθεση συνεπών διαγώνιων μητρώων μάζας, επιτρέποντας την γρήγορη λύση του ηλεκτρομηχανικού συστήματος με τη μέθοδο κεντρικών διαφορών άμεσης ολοκλήρωσης.Τελειώνοντας, το τρίτο επιμέρους κομμάτι της διατριβής ασχολείται με τα δοκίμια πολύστρωτων δοκών και πλακών (από ίνες άνθρακα σε εποξειδική ρητίνη) που κατασκευάστηκαν στη παρούσα διατριβή, και με τα πειράματα που διεξήχθησαν σε αυτά με σκοπό την πειραματική επαλήθευση και πιστοποίηση των αριθμητικών αποτελεσμάτων.


Sign in / Sign up

Export Citation Format

Share Document