Optimization of Mg Scraps Hydrolysis for Hydrogen Generation Using HCl: Experimental and Simulation

2019 ◽  
Author(s):  
Rokhsareh Akbarzadeh ◽  
Qusai Ibrahim ◽  
Joshua Adeniran ◽  
Peter Oviroh ◽  
Tien-Chien Jen

Abstract Worldwide concerns on environmental pollution and the need for clean energy supply have attracted researchers’ interest for power generation using technology which not only is a clean technology but also utilizes the Mg scrap waste, a part of solid waste from electronic and automobile industries. The Mg scraps have been used for the hydrogen generation via hydrolysis. In an attempt we conducted the experimental study and optimization of hydrolysis of Mg scraps waste in the presence of HCl to generate hydrogen. This work optimizes the process of using Mg scraps to produce H2, Mg(OH)2 and MgCl2. The effect of different concentration of HCl on hydrolysis was studied to find the optimum concentration for the hydrogen generation. The most influencing parameters such as acid concentration of solution was selected and studied. The kinetic behaviour was analysed to determine the effect of different HCl concentration on hydrogen generation pattern. Numerical modeling was performed considering the chemical reaction using ReaxFF. The effect of the selected parameters on the system and the hydrogen concentration were investigated to predict the performance of the hydrolysis of Mg scraps in the designed reactor. This study proposes an eco-efficient method as it utilizes the Mg waste to produce hydrogen which is an energy carrier.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1153 ◽  
Author(s):  
Aina Shasha Hashimi ◽  
Muhammad Amirul Nazhif Mohd Nohan ◽  
Siew Xian Chin ◽  
Poi Sim Khiew ◽  
Sarani Zakaria ◽  
...  

Hydrogen (H2) is a clean energy carrier which can help to solve environmental issues with the depletion of fossil fuels. Sodium borohydride (NaBH4) is a promising candidate material for solid state hydrogen storage due to its huge hydrogen storage capacity and nontoxicity. However, the hydrolysis of NaBH4 usually requires expensive noble metal catalysts for a high H2 generation rate (HGR). Here, we synthesized high-aspect ratio copper nanowires (CuNWs) using a hydrothermal method and used them as the catalyst for the hydrolysis of NaBH4 to produce H2. The catalytic H2 generation demonstrated that 0.1 ng of CuNWs could achieve the highest volume of H2 gas in 240 min. The as-prepared CuNWs exhibited remarkable catalytic performance: the HGR of this study (2.7 × 1010 mL min−1 g−1) is ~3.27 × 107 times higher than a previous study on a Cu-based catalyst. Furthermore, a low activation energy (Ea) of 42.48 kJ mol−1 was calculated. Next, the retreated CuNWs showed an outstanding and stable performance for five consecutive cycles. Moreover, consistent catalytic activity was observed when the same CuNWs strip was used for four consecutive weeks. Based on the results obtained, we have shown that CuNWs can be a plausible candidate for the replacement of a costly catalyst for H2 generation.


2020 ◽  
Author(s):  
Yongwei Wang ◽  
Fei Chen ◽  
Xiaolong Hao ◽  
Fan Wang

<p>With the rapid development of social economy, China's energy demand has been growing at an alarming rate. The annual cumulative power generation is about  6.8 trillion kilowatts hour in 2017, and 70% of them is provided by fossil fuel resources, so it is important to promote the use of renewable and clean energy, such as solar power generation technology. The advantages of using solar panel roof in urban areas include reduction of the need of land use in the crowed city and less dependence on fossil fuels. However, there is need to understand impacts of solar roof on local climate, on energy supply during heatwaves, and associated economic benefits in China. This study selected a heatwave event in Jiangsu province, China to simulate the impact of solar panel roof on local thermal environment and energy supply. During that time, the cooling energy consumption reached more than half of the total electricity consumption. A new heat transfer scheme of solar panel roof was introduced into WRF/BEP/BEM model, which include layers (glass protective panel, solar panel, bottom plate) and was divided into two types for heat transfer calculation: bracket and non-bracket. The results showed that the urban average 2-m daytime temperature decreased by 0.3℃ in non-bracket case which is better than that of bracket case, while its cooling effect on nighttime temperature was small. For the bracket case, its cooling effect on daytime and nighttime air temperature were equal (0.2<sup>o</sup>C). Both solar panel roofs can reduce indoor daytime air temperature with the maximum cooling effect around 11:00 local time for non-bracket roof and 14:00 for bracket roof. However, bracket roof increased nighttime indoor air temperature and air-conditioning energy consumption. Solar panel roofs also reduce daytime turbulent kinetic energy and constrain the development of boundary layer. Results also show that with solar photoelectric conversion efficiency being 0.14, the photovoltaic power generation can meet 84.1%, 61.3% and 35.9% of the cooling energy consumption for high-density, low-density residential areas and commercial areas, respectively, during this heatwave event.</p>


2021 ◽  
pp. 15-37
Author(s):  
A. Kutsyi ◽  
◽  
A. Kytsya ◽  
V. Yartys ◽  
I. Zavaliy ◽  
...  

NATO project G 5233 “Portable energy supply” was executed by 4 teams (Institute for Energy Technology, Norway and 3 Institutes of the National Academy of Sciences of Ukraine). G5233 Project was focused on the development of hydrogen fueled portable energy supply systems integrating hydrogen generation and storage units based on use of light metals, metal and complex hydride materials and portable fuel cells. The weight efficient energy supply device was developed by using these selected materials and performance-optimised NaBH4 complex hydride. Besides, various new relevant units of equipment for the samples preparation and characterization were ordered and accommodated in the participants labs and the program of training of young scientists at IFE, Norway was accomplished. Different types of materials for hydrogen generation were synthesized and characterized (activated aluminium alloys, Mg-Al alloys, MgH2 and their composites, NaBH4 with catalytic additives). The challenging objective of reaching a completeness of the hydrolysis of MgH2 was achieved; the reaction conditions were optimized and the particular focus applications integrating efficient hydrogen generation systems were identified. The mechanism and the kinetics model of the hydrolysis process of MgH2 in water solutions have been proposed which successfully describe the experimental data. In parallel with the hydrolysis reaction resulting in hydrogen generation and formation of Mg(OH)2 , the process involves passivation of the MgH2 surface by the formed Mg(OH)2 precipitate followed by its re-passivation with the rate constants of these processes being established. Increase of the concentration of MgCl2 leads to just a minor increase in the rate constant of the interaction of MgH2 with water but leads to a sharp increase of the rate constant of the repassivation of MgH2 surface. To achieve efficient hydrolysis of NaBH4 , different types of catalysts (heterogeneous on the basis of Pt and "homogeneous" - salts of Ni+2 and Co+2) were studied and optimized. Several systems were selected as candidates to provide the required hydrogen flow to operate a 30 W fuel cell over a given time exceeding 1 hour, based on a use of inexpensive and affordable hydrogen-containing materials and catalytic additives. 3 individual hydrolysis workstations (1 in Norway and 2 in Ukraine) were built, tested and optimized. The plan of the work to reach the objectives of the Project G5233 “Portable energy supply” is completely accomplished, all the milestones are successfully fulfilled and the overall goal of the Project is reached.


Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Dalius Girdzevičius ◽  
Darius Milčius

Hydrogen is considered an energy vector of the future because of its potential use for clean energy generation. Portable electronic devices can be powered when hydrogen is supplied to fuel cells. In order to avoid massive equipment for hydrogen storage, direct hydrogen production can be achieved on-site during the reaction between metals/metal alloys/metal hydrides and water. Magnesium hydride offers great perspective for widespread applications as its weight yield of hydrogen reaches 6.4% according to the reaction with water and it can even increase to 15.2% if water produced in the fuel cell is used in the reaction again. In the  present work, Mg powder with the  content of Ni was synthesized under low temperature hydrogen plasma conditions changing the DC magnetron current from 0.5 to 1 A. As pure Mg powder was immersed into hydrogen plasma, the simultaneous hydrogenation process was ensured. Nickel was chosen as a catalyst capable to influence the growth of hydride. The process of electric power generation was investigated when reaction between modified Mg powder and water was applied to laboratory-built equipment consisting of a reactor for hydrogen production, gas dryer before H2 introduction to the  fuel cell, fuel cell, load and energy meter. Solutions of acetic acid and sodium chloride were used as promoters during powder-water reactions. The characterisation of predicted magnesium hydride powder was done using scanning electron microscopy, electron dispersive spectroscopy and X-ray diffraction. XRD analysis showed only Mg, MgO and Ni peaks indicating that hydrogen generation during powder-water reaction was evoked because of microgalvanic corrosion at Mg-Ni intersections.


2018 ◽  
Vol 13 (Number 1) ◽  
pp. 55-67
Author(s):  
Shafini M. Shafie ◽  
Zakirah Othman ◽  
N Hami

Malaysia has an abundance of biomass resources that can be utilised for power generation. One of them is paddy residue. Paddy residue creates ahuge potential in the power generation sector. The consumption of paddy residue can help Malaysia become less dependent on conventional sources of energy, mitigate greenhouse gas(GHG) emission, offer positive feedback in the economic sector, and at the same time, provide thebest solution for waste management activities. The forecast datafor 20 years on electricity generation wasused to calculate the GHG emission and its saving when paddy residue is used for electricity generation. The government’scost saving was also identified when paddy residue substituted coal fuel in electricity generation.This paper can provide forecast information so that Malaysia is able to move forward to apply paddy residue as feedstock in energy supply. Hopefully, the data achieved can encourage stakeholder bodies in the implementation of paddy residue inelectricity generation since there is apositive impact towardscost and emission saving.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Xiaoshuang Chen ◽  
Meina Ju ◽  
Kun Song ◽  
Guoli Chen ◽  
Rui Yang ◽  
...  

Hydrogen generation via water electroreduction is a pivotal portion of exploiting clean-energy skills. Nevertheless, developing a low price and high-performance catalytic activity substance to take the place of expensively precious...


Silicon ◽  
2021 ◽  
Author(s):  
Huawei Song ◽  
Pengfei Pan ◽  
Kaihua Xu ◽  
Yuping Zhang ◽  
Zhengxin Yang ◽  
...  

Author(s):  
Andrea Opreni ◽  
Attilio Frangi ◽  
Nicolo Boni ◽  
Gianluca Mendicino ◽  
Massimiliano Merli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document