URANS Modeling of Effects of Rotation on Flow Distribution and Heat Transfer in an Electric Motor

Author(s):  
Ankit Tiwari ◽  
Savas Yavuzkurt

Abstract Traction motors are electric motors used in vehicle propulsion. In this study, an externally cooled 3-phase AC induction motor which has cooling tubes drilled axially throughout the length of the rotor and stator, is analyzed for thermal performance. The cooling air is supplied by a centrifugal blower connected to the inlet plenum of the motor. Unlike in static condition, the relative distribution of air in the rotor and the stator tubes is not uniform and varies due to the rotation of rotor. It has been shown in previous studies that due to rotor’s rotation, the resistance of the flow path through the rotor tubes increases compared to the static condition. This results in reduction of flow through the rotor tubes. Generally, the steady state MRF (Multiple Reference Frame) approach is used to model the rotational effect. While this approach works in the initial design phase, Unsteady sliding mesh approach is suggested for design validation. It was found that at 3000 RPM, the mass flow rate in the rotor predicted by the Sliding mesh model could be as much as 16% lower than that predicted by the MRF model. To assess its impact on thermal performance, steady state conjugate heat transfer analysis was performed. It was found that the rotor temperatures could be up to 8.6-degree C higher based on the mass flow predictions by sliding mesh approach compared to the MRF approach.

Author(s):  
Karthik Silaipillayarputhur ◽  
Ali Al-Saif ◽  
Musab Al-Otaibi

In this paper, steady state sensible performance analysis on multi pass parallel cross flow exchanger was considered. The inputs to the heat exchanger were described through meaningful physically significant parameters such as number of transfer units, capacity rate ratio and dimensionless input temperature. The inputs to the heat exchager were varied systematically and a parametric study was conducted to determine the thermal performance at each individual pass of the heat exchanger. Heat exchanger’s thermal performance was described through the discharge temperatures that were expressed in a dimensionless form. The results from the study were presented in the form of performance tables. The performance tables employed meaningful and industry recognized dimensionless input parameters and the heat exchanger‘s performance was described through dimensionless discharge temperatures at every pass of the heat exchanger. The developed performance tables shall serve two critical aspects. First, it will help the heat exchanger designers to readily choose an optimum heat exchanger. An undersized heat exchanger shall not deliver the requirements and likewise an oversized heat exchanger shall add unnecessary weight and cost. This aspect was clearly observed in this study as indefinetly increasing the number of transfer units (or surface area) beyond a threshold value didn’t enhance the heat transfer. By employing the performance tables as a guide, the heat exchanger designers can quickly ascertain the performance of the heat exchanger without having to perform simulations and/or lengthy calculations. Second, during operational phase of the heat exchanger, the performance tables can be used to understand the performance variation of the heat exchanger with respect to mass flow rates and/or can help the engineers to choose appropriate mass flow rates for the required heat transfer. The highest heat exchanger performance was observed at the lowest capacity rate ratio and likewise the lowest heat exchanger performance was observed at the highest capacity rate ratio. In-addition, during the operational phase, the performance tables can help to detect an underperforming heat exchanger and can help the engineers to schedule maintenance activity on the heat exchanger equipment.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Author(s):  
Anika Steurer ◽  
Rico Poser ◽  
Jens von Wolfersdorf ◽  
Stefan Retzko

The present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20mm that intersect coplanar at an angle θ = 40°, the innermost in three, the outermost in one intersection level. Two additional non-intersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional RANS simulations using the SST turbulence model. The presented analysis uncouples local heat transfer coefficients from actually measured local temperatures but uses the time information of the thermocouples instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether heat transfer is locally enhanced due to higher mass flow rates or the intersection effects.


Author(s):  
Xingyun Jia ◽  
Liguo Wang ◽  
Qun Zheng ◽  
Hai Zhang ◽  
Yuting Jiang

Performance of generic rim seal configurations, axial-clearance rim seal (ACS), radial-clearance rim seal (RCS), radial-axial clearance rim seal (RACS) are compared under realistic working conditions. Conjugate heat transfer analysis on rim seal is performed in this paper to understand the impact of ingestion on disc temperature. Results show that seal effectiveness and cooling effectiveness of RACS are the best when compared with ACS and RCS, the minimum mass flow rate for seal of RACS is 75% of that of RCS, and 34.6% of ACS. Authors compare the disc temperature distribution between different generic rim seal configurations where the RACS seems to be favorable in terms of low disc temperature. In addition, RACS has higher air-cooled aerodynamic efficiency, minimizing the mainstream performance penalty when compared with ACS and RCS. Corresponding to the respective minimum mass flow rate for seal, the air-cooled aerodynamic efficiency of RACS is 23.71% higher than that of ACS, and 12.79% higher than the RCS.


Author(s):  
Y. Janeborvorn ◽  
T. P. Filburn ◽  
C. C. Yavuzturk ◽  
E. K. Ungar

Hydrophobic, micropore membrane evaporators are studied for use in waste heat rejection in new generation spacesuits developed by the U.S. National Aeronautics and Space Administration (NASA). The waste heat rejection is accomplished via evaporation of liquid water through membrane pores, whereby the hydrophobic membrane allows only water vapor to pass through and retains the liquid phase inside the membrane water channel, allowing the waste heat rejection through the proposed spacesuit water membrane evaporator (SWME) system to be significantly less sensitive to contamination while improving the overall contaminant and system control. Although SWME uses the same heat transport loop as used in current NASA sublimator systems, thus eliminating the need for a separate feedwater system, it permits the system configuration to be simpler and more compact while also eliminating corrosion problems and reducing system freeze-up potential. An improved thermal performance model based on membrane segment energy balances is presented, which is a spacesuit water membrane evaporator for a single circular annulus water channel bounded by two annular vapor channels. The model allows for the investigation of the local heat transfer characteristics along the annulus including temperature gradients in the membrane wall and the water channel using a steady-state approach. The model also accounts for the effects of thermal and hydraulic entry lengths, far field radiation, and energy carried away by the mass of water evaporation. The local heat transfer analysis enables the straightforward calculation of the overall magnitude of heat transfer from the SWME. A model validation is presented via the sum of the squares error analyses between the model predictions and the experimental results.


Sign in / Sign up

Export Citation Format

Share Document