Development and Performance Evaluation of a Dynamic Compressed Air Energy Storage System

2020 ◽  
Author(s):  
R. K. N. Kabinga ◽  
L. K. Tartibu ◽  
M. O. Okwu

Abstract Renewable and clean energy are safe sources for powering the world in the future. The use of fossil fuels in the transportation sector produces 15 to 20 % of greenhouse gas emissions. To solve this problem, renewable energy sources are being considered for use in the domain of transportation, and compressed air energy is one of them. But the efficiency of the compressed air powered systems depends largely on its energy storage density. In this paper, the performance of two distinct compressed air reservoirs for energy storage in small scale systems was investigated. Two air compressors fitted with static reservoirs were utilized for the experiment. The first air compressor was driven by an internal combustion engine (ICE) and the second was driven by an electric motor. The experimental results were used to provide a frame of reference for the computer (MATLAB) simulation on the dynamic reservoir. Additionally, the dynamic reservoir, which is a system fitted with a piston and spring, was analyzed considering three different spring stiffness. This study showed that the dynamic reservoir provides a consistent and better performance during the charging and discharging process, affecting positively the behavior of the pressure and the compressed air mass flowrate.

2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
pp. 193-226
Author(s):  
Raghuveera Sai Sarath Dittakavi ◽  
David S-K. Ting ◽  
Rupp Carriveau ◽  
Mehdi Ebrahimi

Proceedings ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 5
Author(s):  
Mohamad Cheayb ◽  
Sébastien Poncet ◽  
Mylène Marin-Gallego ◽  
Mohand Tazerout

Recently, major improvement on compressed air energy storage technology has been made by using the heat of compression for heating energy or using it to preheat the compressed air in the expansion phase and by demonstrating its ability to produce cooling energy. Thus, the trigenerative compressed air energy storage has been introduced. In this paper, we introduce a configuration of trigenerative compressed air energy storage system giving the preference to the electric energy production. The study then focuses on undertaking an optimization study via a parametric analysis considering the mutual effects of parameters. This analysis is applied to a micro-scale application including the existing technological aspects. The parametric study results applied on the hot temperature of the thermal energy storage indicate the possibility to find an optimal solution as a trade-off between system performances and other parameters reflecting its cost. On the contrary, the selection of the maximal storage pressure cannot be achieved by finding a compromise between energy density and system efficiency. A complete study of other design parameters will be addressed in a future publication.


Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 121842
Author(s):  
Mohamad Cheayb ◽  
Mylène Marin Gallego ◽  
Mohand Tazerout ◽  
Sébastien Poncet

Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1440
Author(s):  
Chenyixuan Ni ◽  
Xiaodai Xue ◽  
Shengwei Mei ◽  
Xiao-Ping Zhang ◽  
Xiaotao Chen

As a fundamental infrastructure of energy supply for future society, energy Internet (EI) can achieve clean energy generation, conversion, storage and consumption in a more economic and safer way. This paper demonstrates the technology principle of advanced adiabatic compressed air energy storage system (AA-CAES), as well as analysis of the technical characteristics of AA-CAES. Furthermore, we propose an overall architectural scheme of a clean energy router (CER) based on AA-CAES. The storage and mutual conversion mechanism of wind and solar power, heating, and other clean energy were designed to provide a key technological solution for the coordination and comprehensive utilization of various clean energies for the EI. Therefore, the design of the CER scheme and its efficiency were analyzed based on a thermodynamic simulation model of AA-CAES. Meanwhile, we explored the energy conversion mechanism of the CER and improved its overall efficiency. The CER based on AA-CAES proposed in this paper can provide a reference for efficient comprehensive energy utilization (CEU) (93.6%) in regions with abundant wind and solar energy sources.


Sign in / Sign up

Export Citation Format

Share Document