Molecular Dynamics Simulation Based Cohesive Zone Representation of Intergranular Fracture Processes in Bicrystalline Graphene

Author(s):  
MD Imrul Reza Shishir ◽  
Alireza Tabarraei

Abstract The fracture properties of various grain boundaries in graphene are investigated using the cohesive zone method (CZM). Molecular dynamics simulations are conducted using REBO2+S potential in order to develop a cohesive zone model for graphene grain boundaries using a double cantilever bicrystalline graphene sheet. The cohesive zone model is used to investigate the traction–separation law to understand the separation-work and strength of grain boundaries.

RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65942-65948 ◽  
Author(s):  
Yuan Qi ◽  
Wen-Ping Wu ◽  
Yun-Bing Chen ◽  
Ming-Xiang Chen

Void forms in the sample with (100) orientation; brittle fracture in the sample with (110) orientation; blunting and slip bands occurs in the sample with (111) orientation.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 836
Author(s):  
Xiao Ru Zhuo ◽  
Aibin Ma

The fracture of the Mg/Mg17Al12 interface was investigated by molecular dynamics simulations. The interface crack extends in a brittle manner without noticeable plasticity. The distributions of normal stress and separation along the interface were examined to render a quantitative picture of the fracture process. A normal traction–separation curve was extracted from simulation and compared with three cohesive zone models, i.e., cubic polynomial cohesive zone model, exponential cohesive zone model, and bilinear cohesive zone model. The exponential cohesive zone model exhibits the best agreement with simulation results, followed by the bilinear cohesive zone model.


Author(s):  
Ibrahim Awad ◽  
Leila Ladani

Due to their superior mechanical and electrical properties, multiwalled carbon nanotubes (MWCNTs) have the potential to be used in many nano-/micro-electronic applications, e.g., through silicon vias (TSVs), interconnects, transistors, etc. In particular, use of MWCNT bundles inside annular cylinders of copper (Cu) as TSV is proposed in this study. However, the significant difference in scale makes it difficult to evaluate the interfacial mechanical integrity. Cohesive zone models (CZM) are typically used at large scale to determine the mechanical adherence at the interface. However, at molecular level, no routine technique is available. Molecular dynamic (MD) simulations is used to determine the stresses that are required to separate MWCNTs from a copper slab and generate normal stress–displacement curves for CZM. Only van der Waals (vdW) interaction is considered for MWCNT/Cu interface. A displacement controlled loading was applied in a direction perpendicular to MWCNT's axis in different cases with different number of walls and at different temperatures and CZM is obtained for each case. Furthermore, their effect on the CZM key parameters (normal cohesive strength (σmax) and the corresponding displacement (δn) has been studied. By increasing the number of the walls of the MWCNT, σmax was found to nonlinearly decrease. Displacement at maximum stress, δn, showed a nonlinear decrease as well with increasing the number of walls. Temperature effect on the stress–displacement curves was studied. When temperature was increased beyond 1 K, no relationship was found between the maximum normal stress and temperature. Likewise, the displacement at maximum load did not show any dependency to temperature.


2005 ◽  
Vol 127 (2) ◽  
pp. 222-232 ◽  
Author(s):  
S. Namilae ◽  
N. Chandra

In order to fully harness the outstanding mechanical properties of carbon nanotubes (CNT) as fiber reinforcements, it is essential to understand the nature of load transfer in the fiber matrix interfacial region of CNT-based composites. With controlled experimentation on nanoscale interfaces far off, molecular dynamics (MD) is evolving as the primary method to model these systems and processes. While MD is capable of simulating atomistic behavior in a deterministic manner, the extremely small length and time scales modeled by MD necessitate multiscale approaches. To study the atomic scale interface effects on composite behavior, we herein develop a hierarchical multiscale methodology linking molecular dynamics and the finite element method through atomically informed cohesive zone model parameters to represent interfaces. Motivated by the successful application of pullout tests in conventional composites, we simulate fiber pullout tests of carbon nanotubes in a given matrix using MD. The results of the pullout simulations are then used to evaluate cohesive zone model parameters. These cohesive zone models (CZM) are then used in a finite element setting to study the macroscopic mechanical response of the composites. Thus, the method suggested explicitly accounts for the behavior of nanoscale interfaces existing between the matrix and CNT. The developed methodology is used to study the effect of interface strength on stiffness of the CNT-based composite.


Sign in / Sign up

Export Citation Format

Share Document