Metal Forming With Laser Origami: Parameter Analysis and Optimization

Author(s):  
Peiwen J. Ma ◽  
Yue Hao ◽  
Jyh-Ming Lien ◽  
Edwin A. Peraza Hernandez

Abstract Laser origami is a metal forming process where an initially planar sheet is transformed into a target three-dimensional (3D) form through cutting and folding operations executed by a laser beam. A key challenge in laser origami is to determine the locations of the cuts and folds required to transform the planar sheet into the 3D target shape. The region of the planar sheet that can be transformed into the target shape through these cuts and folds is denoted as the net. This paper presents a method to determine optimal net(s) for laser origami based on criteria including minimum energy usage, minimum fabrication time, minimum error in the fold angles, and minimum material usage. The 3D target shape is given as a polygonal mesh. To generate a net, each edge in the mesh must be classified as a cut or a fold. The energy, time, and other parameters associated with cutting or folding each edge are determined using experimentally calibrated formulas. A search algorithm is subsequently implemented to find combinations of cut and folded edges that provide an optimal set of nets for the given 3D target shape based on a cost function. Nets that are disconnected or have overlapping regions are discarded since they are invalid for laser origami. The method is demonstrated by applying it to different target shapes and cost functions.

2019 ◽  
Vol 969 ◽  
pp. 552-557
Author(s):  
Kuntal Maji

Fabricating three dimensional shaped surfaces from flat sheet metals by laser forming, both out-of-plane and in-plane deformations are required. This article presents the modeling of coupling mechanism activated laser forming of sheet metals based on experimental data for prediction and optimization of bending and thickening deformations. Experiments were performed based on a central composite design of experiments on coupling mechanism based laser metal forming process considering the input process parameters like laser power, scan speed and spot diameter, bending and thickening were taken as the outputs. Neural network and neuro-fuzzy system-based models were developed to carry out both forward and inverse modeling of the laser metal forming process under the coupling mechanism. Multi-objective optimization based on the non-dominated sorting genetic algorithm was used to obtain multiple optimal solutions to achieve different amounts of out-of-plane and in-plane deformations. The proposed method could guide for a suitable selection of the process parameters to produce three-dimensional shapes utilizing coupling mechanism-based laser forming using multiple laser line heating.


2012 ◽  
Vol 479-481 ◽  
pp. 1963-1967
Author(s):  
Ling Long ◽  
Chao Song ◽  
Guo Fu Yin

A new kind of swarm intelligence algorithm called stochastic focusing search(SFS) is proposed and applied to optimize sheet metal forming process in this paper. The steps of the optimization procedure include combining numerical simulation technology with orthogonal experiments to provide training samples for BP net, and producing the fitted function as optimization function for SFS algorithm. The validation of the final optimization results by a rectangular box part stamping case shows that this kind of optimization methodology is correct and reliable for the design of deep drawing process. Advantages of the SFS algorithm are demonstrated that SFS has good global searching ability and fast convergence speed in finding optimal solutions, which means the optimization method using SFS algorithm can provide a competitive way of solving the optimization design problems in sheet metal forming.


2014 ◽  
Vol 686 ◽  
pp. 22-25
Author(s):  
Li Min Zhang

Rapid prototyping technology can greatly improve the actual processing industrial prototype; this paper introduces the main principle, characteristics and technology of rapid prototype manufacturing. The current rapid prototype manufacturing products and production problems are analyzed. Because of the direct metal forming process have the characteristic of point by point, surfacing with stack molding manufacturing layer by layer, so it is suitable for complex shape parts two-dimensional or three-dimensional functionally gradient materials manufacturing.


Author(s):  
Takayuki Hama ◽  
Motoo Asakawa ◽  
Masato Takamura ◽  
Akitake Makinouchi ◽  
Cristian Teodosiu

Author(s):  
Min-Cheol Lee ◽  
Sang-Hyun Sim ◽  
Jae-Gun Eom ◽  
Man-Soo Joun ◽  
Wan-Jin Chung

In this paper, finite element prediction of a cold sheet metal forming process is investigated using solid elements. A three-dimensional rigid-plastic finite element method with conventional linear tetrahedral MINI-elements [1, 2] is employed. This technique has traditionally been used for bulk metal forming simulations. Both single- and double-layer finite element mesh systems are studied, with particular attention to their effect on the deformed shape of the workpiece and thickness variation. The procedure is applied to the well-known problem of the NUMISHEET93 international benchmark. The resulting predictions are compared with experimental observations found in the literature, and good agreement is noted.


2010 ◽  
Vol 102-104 ◽  
pp. 242-246 ◽  
Author(s):  
Fei Han ◽  
Jian Hua Mo ◽  
Xiao Hui Cui ◽  
Zai Lin Wang

Incremental sheet forming (ISF) is an innovative and highly flexible sheet metal forming process for small batch production and prototyping, but springback is a very important factor to influence the quality of incremental sheet forming. This paper investigates the springback mechanism of incremental sheet forming using numerical method. A three-dimensional elasto-plastic finite element model was established for the simulation of the incremental sheet forming process. In this model, the combination of dynamic explicit algorithm and the static implicit algorithm was proposed to calculate the whole forming process including springback. The results of numerical simulation, such as, the strain history and distribution, the stress state and distribution, etc., are discussed in details. Moreover, the results confirm that residual stress has been releasing during forming process, which reveal the peculiar springback characteristic of incremental sheet forming process.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2000 ◽  
Vol 123 (4) ◽  
pp. 398-402 ◽  
Author(s):  
Sing C. Tang ◽  
Z. Cedric Xia ◽  
Feng Ren

It is well known in the literature that the isotropic hardening rule in plasticity is not realistic for handling plastic deformation in a simulation of a full sheet-metal forming process including springback. An anisotropic hardening rule proposed by Mroz is more realistic. For an accurate computation of the stress increment for a given strain increment by using Mroz’s rule, the conventional subinterval integration takes excessive computing time. This paper proposes the radial return method to compute such stress increment for saving computing time. Two numerical examples show the efficiency of the proposed method. Even for a sheet model with more than 10,000 thin shell elements, the radial return method takes only 40 percent of the overall computing time by the subinterval integration.


Sign in / Sign up

Export Citation Format

Share Document