stress increment
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 13 (22) ◽  
pp. 12376
Author(s):  
Xingkai Wang ◽  
Leibo Song ◽  
Caichu Xia ◽  
Guansheng Han ◽  
Zheming Zhu

For many rock engineering projects, the stress of surrounding rocks is constantly increasing and decreasing during excavating progress and the long-term operation stage. Herein, the triaxial creep behavior of dolomitic limestone subjected to cyclic incremental loading and unloading was probed using an advanced rock mechanics testing system (i.e., MTS815.04). Then, the instantaneous elastic strain, instantaneous plastic strain, visco-elastic strain, and visco-plastic strain components were separated from the total strain curve, and evolutions of these different types of strain with deviatoric stress increment were analyzed. Furthermore, a damage variable considering the proportion of irrecoverable plastic strain to the total strain was introduced, and a new nonlinear multi-element creep model was established by connecting the newly proposed damage viscous body in series with the Hookean substance, St. Venant body, and Kelvin element. The parameters of this new model were analyzed. The findings are listed as follows: (1) When the deviatoric stress is not more than 75% of the compressive strength, only instantaneous deformation, transient creep, and steady-state creep deformation occur, rock deformation is mainly characterized by the instantaneous strain, whereas the irrecoverable instantaneous plastic strain accounts for 38.02–60.27% of the total instantaneous strain; (2) Greater deviatoric stress corresponds to more obvious creep deformation. The visco-elastic strain increases linearly with the increase of deviatoric stress, especially the irrecoverable visco-plastic strain increases exponentially with deviatoric stress increment, and finally leads to accelerated creep and delayed failure of the sample; (3) Based on the experimental data, the proposed nonlinear creep model is verified to describe the full creep stage perfectly, particularly the tertiary creep stage. These results could deepen our understanding of the elasto-visco-plastic deformation behavior of dolomitic limestone and have theoretical and practical significance for the safe excavation and long-term stability of underground rock engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liping Chen ◽  
Shihai Bian ◽  
Xiaokai Niu ◽  
Yongbo Zhao

The dilatancy behavior of rockfill materials shows obvious stress path dependence. Lade-Kim plastic potential equation has been proposed for a long time to model the mechanical behavior of sand and concrete materials. However, it lacks the verification of rockfill materials, especially under various stress paths. In this paper, the dilatancy performance of coarse-grained materials under various stress paths is investigated, and then the dilatancy equation description and verification method based on Lade-Kim plastic potential are given. The applicability of Lade-Kim plastic potential for different stress path tests, such as conventional triaxial tests, constant P tests, and constant stress (increment) ratio tests, are verified and evaluated. It is found that Lade-Kim plastic potential is difficult to consider the influence of stress path. Finally, the Lade-Kim plastic potential, together with nonlinear dilatancy equation, is evaluated by changing the dilatancy equation in the framework of generalized plasticity. Lade-Kim plastic potential is suitable for constant stress increment ratio loading experiments and special care should be taken when applied to other stress paths. These works are helpful to understand stress path dependence of dilatancy behavior for rockfill materials and is beneficial for the establishment of stress path constitutive model.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Jiang Xu ◽  
Guoliang Dai ◽  
Desheng Zhu ◽  
Weimingweiming Gong ◽  
Ranjith Pathegama Gamage ◽  
...  

2019 ◽  
Vol 828 ◽  
pp. 170-179
Author(s):  
Yun Peng Guo ◽  
Cheng Zhi Qi ◽  
Chao Ma ◽  
Zhen Hui Lu ◽  
You Jie Sun

Taking the standard sand of Fujian as the test material, this paper concentrates on studying the influence of different stress increment directions on the direction of plastic strain increment of sand materials under different stress states and the underlying mechanism. The test results show that the plastic strain increment angle rotates counterclockwise with the increase of stress increment direction angle, but the two angles do not coincide; the higher the stress state parameters is, the larger the stress increment direction angle range corresponding to sand dilatation is, the smaller the plastic strain increment direction angle range is, and the plastic volumetric strain still increases in critical state.The plastic flow mechanism of sand is explained from the average stress increment, generalized shear stress increment and stress state, which may provide theoretical reference and numerical support for the related research of plastic strain increment direction of sand.


Author(s):  
Sergey Aleksandrovich Makeev ◽  
Victor Andreevich Mamontov ◽  
Aleksey Aleksandrovich Khalyavkin ◽  
Denis Olegovich Shatskov

The article studies the influence of a rigidity coefficient of the elastic supports and a foundation, which simulate deadwood bearings in the design models, on the stress-strain state of the ship shaft line. The importance of a rigidity coefficient in designing the ship shaft line and its elements has been specified. In the analysis the rigidity coefficient is taken as a constant value. Elastic characteristics of the stern bearing bushings may greatly affect the parameters of the designed shaft lines. Generally, the stern bearings are made of caprolon, pockwood, babbit and rubber. There has been presented a design model of the ship shaft line on elastic point support. It has been stated that the value of the rigidity coefficient is specified in many works when calculating the ship shaft line, but there is no reference to the sources and methods of receiving it. The overall view of the deformed contact of the shaft with stern bearing has been illustrated. The technique of determining the rigidity coefficient has been offered, subject to mechanical and geometrical parameters of the ship shaft line and its deadwood bearings. The equation of defining the stern bearing rigidity coefficient has been produced, which helps to account the elastic parameters of the bushings and geometry of contact of the ship shaft line with the bushing. For reliability of the offered technique a number of pilot studies on the hydropress П-125 were conducted, for which there were manufactured special devices and a mandrel. The essence of method of determining a rigidity module, according to GOST 9550-81, is in measuring the ratio of stress increment to a corresponding increment of relative deformation of compression. It was proved that the divergence of the values of rigidity coefficient received by the experimental and theoretical ways does not exceed 8%.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Sherif M. Kholy ◽  
Ahmed G. Almetwally ◽  
Ibrahim M. Mohamed ◽  
Mehdi Loloi ◽  
Ahmed Abou-Sayed ◽  
...  

Underground injection of slurry in cycles with shut-in periods allows fracture closure and pressure dissipation which in turn prevents pressure accumulation and injection pressure increase from batch to batch. However, in many cases, the accumulation of solids on the fracture faces slows down the leak off which can delay the fracture closure up to several days. The objective in this study is to develop a new predictive method to monitor the stress increment evolution when well shut-in time between injection batches is not sufficient to allow fracture closure. The new technique predicts the fracture closure pressure from the instantaneous shut-in pressure (ISIP) and the injection formation petrophysical/mechanical properties including porosity, permeability, overburden stress, formation pore pressure, Young's modulus, and Poisson's ratio. Actual injection pressure data from a biosolids injector have been used to validate the new predictive technique. During the early well life, the match between the predicted fracture closure pressure values and those obtained from the G-function analysis was excellent, with an absolute error of less than 1%. In later injection batches, the predicted stress increment profile shows a clear trend consistent with the mechanisms of slurry injection and stress shadow analysis. Furthermore, the work shows that the injection operational parameters such as injection flow rate, injected volume per batch, and the volumetric solids concentration have strong impact on the predicted maximum disposal capacity which is reached when the injection zone in situ stress equalizes the upper barrier stress.


Sign in / Sign up

Export Citation Format

Share Document