Diagnostic Technique for Quantitative Resolution of Three-Dimensional Liquid-Gas Phase Boundaries in Microchannel Flows

Author(s):  
Ravi S. Patel ◽  
Suresh V. Garimella

The morphology of liquid-gas interfaces in adiabatic two-phase microchannel flow through a transparent acrylic microchannel of 500 μm × 500 μm square cross section is investigated. Water seeded with 0.5 μm-diameter fluorescent polystyrene particles is pumped through the channel, and the desired adiabatic two-phase flow regime is achieved through controlled air injection. The diagnostic technique relies on obtaining particle position data through epifluorescent imaging of the flow at excitation and emission wavelengths of 532 and 620 nm, respectively. The particle positions are then used to resolve interface locations to within ±2 μm in the viewing plane. This technique was previously demonstrated by the authors for a static meniscus in a capillary tube. The complete interface geometry between liquid and gas phases is obtained for operation in the annular flow regime by mapping the interface within individual focal planes at various depths within the channel. The diagnostic technique is shown to successfully locate and measure interfaces between transparent, immiscible fluids in a dynamic microchannel flow environment.

2018 ◽  
Vol 96 (9) ◽  
pp. 1016-1028 ◽  
Author(s):  
Pramod Kumar Yadav ◽  
Sneha Jaiswal

The present problem is concerned with two-phase fluid flow through a horizontal porous channel in the presence of uniform inclined magnetic field. The micropolar fluid or Eringen fluid and Newtonian viscous fluid are flowing in the upper and lower regions of the horizontal porous channel, respectively. In this paper, the permeability of each region of the horizontal porous channel has been taken to be different. The effects of various physical parameters like angles of inclination of magnetic field, viscosity ratio, micropolarity parameter, etc., on the velocities, micro-rotational velocity of two immiscible fluids in horizontal porous channel, wall-shear stress, and flow rate have been discussed. The result obtained for immiscible micropolar–Newtonian fluids are compared with the results of two immiscible Newtonian fluids. The obtained result may be used in production of oil from oil reservoirs, purification of contaminated ground water, etc.


2007 ◽  
Vol 15 (6) ◽  
pp. 18-23
Author(s):  
Carlos Hidrovo ◽  
Terence Lundy

Microfluidics, the study of fluid flow through structures with micrometer scale dimensions, is an increasingly important discipline within a number of commercial and industrial applications. One focus of active microfluidic research at the Stanford University Microscale Heat Transfer Laboratories (MHTL) is mass and heat transport in two-phase flows, which has applications in the cooling of integrated circuits and the management of water created in PEM fuel cells. At its core, two-phase microfluidics is the study of interactions between moving liquids and/or gases and/or solids (though not necessarily stationary) structures. Advanced confocal microscopy, with its ability to visualize and measure both flow and structure on a single instrumental platform, will certainly play a key role in the continuing development of microfluidic devices.


Author(s):  
Haipeng Zhang ◽  
Tomer Palmon ◽  
Seunghee Kim ◽  
Sangjin Ryu

Abstract Porous media compressed air energy storage (PM-CAES) is an emerging technology that stores compressed air in an underground aquifer during the off-peak periods, to mitigate the mismatch between energy supplies and demands. Thus, PM-CAES involves repeated two-phase fluid flow in porous media, and ensuring the success of PM-CAES requires a better understanding of repetitive two-phase fluid flow through porous media. For this purpose, we previously developed microfluidic channels that retain a two-dimensional (2D) pore network. Because it was found that the geometry of the pore structure significantly affects the patterns and occupational efficiencies of a non-wetting fluid during the drainage-imbibition cycles, a more realistic microfluidic model is needed to reflect the three-dimensional (3D) nature of pore structures in the underground geologic formation. In this study, we developed an easy-to-adopt method to fabricate a microfluidic device with a 3D random pore network using a sacrificial sugar template. Instead of using a master mold made in photolithography, a sacrificial mold was made using sugar grains so that the mold could be washed away after PDMS curing. First, we made sugar templates with different levels of compaction load, and found that the thickness of the templates decreased as the compaction load increased, which suggests more packing of sugar grains and thus lower porosity in the template. Second, we fabricated PDMS porous media using the sugar template as a mold, and imaged their pore structure using micro computed tomography (micro-CT). Pores within PDSM samples appeared more tightly packed as the compacting force increased. Last, we fabricated a prototype PDMS channel device with a 3D pore network using a sugar template, and visualized flow through the pore network using colored water. The flow visualization result shows that the water was guided by the random pores and that the resultant flow pattern was three dimensional.


1985 ◽  
Vol 51 (463) ◽  
pp. 1033-1041 ◽  
Author(s):  
Kunio HIJIKATA ◽  
Yasuo MORI ◽  
Takeo NAGASAKI ◽  
Kunio NOHATA

2014 ◽  
Vol 26 (6) ◽  
pp. 062004 ◽  
Author(s):  
Sujit S. Datta ◽  
Jean-Baptiste Dupin ◽  
David A. Weitz

2002 ◽  
Vol 2002.77 (0) ◽  
pp. _11-17_-_11-18_
Author(s):  
Koichi KONDO ◽  
Tomoyuki HASHIMOTO ◽  
Kenji YOSHIDA ◽  
Tadayoshi MATSUMOTO ◽  
Tomio OKAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document