Interfacial Delamination and Fracture Properties of Potting Compounds and PCB/Epoxy Interfaces Under Flexure Loading After Exposure to Multiple Cure Temperatures

Author(s):  
Pradeep Lall ◽  
Kalyan Dornala ◽  
Jeff Suhling ◽  
John Deep

Electronics components operating under extreme thermo-mechanical stresses are often protected with conformal coating and potting encapsulation to isolate the thermal and vibration shock loads. Development of predictive models for high-g shock survivability of electronics requires the measurement of the interface properties of the potting compounds with the printed circuit board materials. There is scarcity of interface fracture properties of porting compounds with printed circuit board materials. Potting and encapsulation resins are commonly two-part systems which when mixed together form a solid, fully cured material, with no by-products. The cured potting materials are prone to interfacial delamination under dynamic shock loading which in turn potentially cause failures in the package interconnects. The study of interfacial fracture resistance in PCB/epoxy potting systems under dynamic shock loading is important in mitigating the risk of system failure in mission critical applications. In this paper three types of epoxy potting compounds were used as an encapsulation on PCB samples. The potting compounds were selected on the basis of their ultimate elongation under quasi-static loading. Potting compound, A is stiffer material with 5% of ultimate elongation before failure. Potting compound, B is a moderately stiff material with 12% ultimate elongation. Finally potting compound C is a softer material with 90% ultimate elongation before failure. The fracture properties and interfacial crack delamination of the PCB/epoxy interface was determined using three-point bend loading with a pre-crack in the epoxy near the interface. The fracture toughness and crack initiation of the three epoxy systems was compared with the cure schedule and temperature. Fracture modeling was performed with crack tip elements in ABAQUS finite element models to determine the crack initiation and interfacial stresses. A comparison of the fracture properties and the performance of epoxy system resistance to delamination was shown through the three-point bend tests. The finite element model results were correlated with the experimental findings.

2009 ◽  
Vol 419-420 ◽  
pp. 37-40
Author(s):  
Shiuh Chuan Her ◽  
Shien Chin Lan ◽  
Chun Yen Liu ◽  
Bo Ren Yao

Drop test is one of the common methods for determining the reliability of electronic products under actual transportation conditions. The aim of this study is to develop a reliable drop impact simulation technique. The test specimen of a printed circuit board is clamped at two edges on a test fixture and mounted on the drop test machine platform. The drop table is raised at the height of 50mm and dropped with free fall to impinge four half-spheres of Teflon. One accelerometer is mounted on the center of the specimen to measure the impact pulse. The commercial finite element software ANSYS/LS-DYNA is applied to compute the impact acceleration and dynamic strain on the test specimen during the drop impact. The finite element results are compared to the experimental measurement of acceleration with good correlation between simulation and drop testing. With the accurate simulation technique, one is capable of predicting the impact response and characterizing the failure mode prior to real reliability test.


Author(s):  
Pradeep Lall ◽  
Kalyan Dornala ◽  
Jeff Suhling ◽  
John Deep ◽  
Ryan Lowe

Abstract Electronics components operating under extreme thermo-mechanical stresses are often protected with underfills and potting encapsulation to isolate the severe stresses. By encapsulating the entire PCB, the resin provides complete insulation for the unit thereby combining good electrical properties with excellent mechanical protection. In military and defense applications these components are often subjected to mechanical shock loads of 50,000g and are expected to perform with reliability. Due to the bulk of material surrounding the PCB, potting and encapsulation resins are commonly two-part systems which when mixed together form a solid, fully-cured material, with no by-products. The cured potting materials are prone to interfacial delamination under dynamic shock loading which in turn potentially cause failures in the package interconnects. The study of interfacial fracture resistance in PCB/epoxy potting systems under dynamic shock loading is important in mitigating the risk of system failure in mission critical applications. In this paper, three types of epoxy potting compounds were used as an encapsulation on PCB samples. The potting compounds were selected based on their ultimate elongation under quasi-static loading. Potting compound, A is a stiffer material with 5% of ultimate elongation before failure. Potting compound, B is a moderately stiff material with 12% ultimate elongation. Finally, potting compound C is a softer material with 90% ultimate elongation before failure. The fracture properties and interfacial crack delamination of the PCB/epoxy interface were determined using three-point bend loading with a pre-crack at the interface. The fatigue crack growth of the interfacial delamination was characterized for the three epoxy systems. A prediction of number of cycles to failure and the performance of different epoxy system resistance under cyclic bending loading was assessed.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 833 ◽  
Author(s):  
Thomas Glatzl ◽  
Roman Beigelbeck ◽  
Samir Cerimovic ◽  
Harald Steiner ◽  
Albert Treytl

We present finite element method (FEM) simulations of a thermal flow sensor as well as a comparison to measurement results. The thermal sensor is purely based on printed circuit board (PCB) technology, designed for heating, ventilation, and air conditioning (HVAC) systems. Design and readout method of the sensor enables the possibility to measure the flow velocity in various fluids. 2D-FEM simulations were carried out in order to predict the sensor characteristic of envisaged setups. The simulations enable a fast and easy way to evaluate the sensor’s behaviour in different fluids. The results of the FEM simulations are compared to measurements in a real environment, proving the credibility of the model.


Sign in / Sign up

Export Citation Format

Share Document