scholarly journals Heavy Oil Transportation by Pipeline

Author(s):  
John M. Gerez ◽  
Archie R. Pick

More of the crude oil being produced in the world is heavy oil. It was reported by Meyer and Dietzman (1979) that world annual production of heavy crude oil was about five percent of other oil produced. They forecast that heavy crude oil production would increase. Canadian heavy oil production cumulative to 1979 was reported to be 197 million barrels. By 1996 Canadian daily production levels have risen to the levels shown in Table 1, with annual production of heavy oil and bitumen exceeding cumulative totals produced to 1979.

Author(s):  
W. Reid Dreher ◽  
Ray Johnston ◽  
Peter Lauzon ◽  
Joey Pierce

As worldwide heavy crude oil production increases, pipelines are faced with challenges to transport these higher viscosity fluids. Historically, heavy crude oil has been a challenge for existing commercially available DRAs. As crude oil gravities fall below ∼23 °API, existing DRAs become ineffective. ConocoPhillips Specialty Products Inc. (CSPI) developed a new class of DRAs to address this need. CSPI’s new heavy crude oil DRA technology, ExtremePower™ Flow Improvers, is proven to increase deliveries of produced heavy crude oil to market. In this paper we will discuss the mechanism of drag reduction, how a heavy crude oil DRA works, and two scenarios in which value is created by utilizing the product.


2018 ◽  
Vol 9 (2) ◽  
pp. 141-146
Author(s):  
Redaksi Tim Jurnal

rom EEOR, Electro Enhanced Oil Recovery, and a developing technology application which has been established earlier. The difference is ESOR relatively does not improve recovery factor of producing well. Ideally any crude oil producing well will be experiencing pressure decline which may affect crude oil production decrement, naturally. Regarding some similar researches around the world, the use of direct current electrical exposure was proven to increase number of heavy crude oil production. At least salinity, hydrocarbon chemical compounds and crude oil flow in the reservoir (electro-osmosis) involves during chemical processes in the reservoir while ESOR application. Number of electrons conducted from direct current electrical power supply will be a supporting media during chemical process of these parameters. Unfortunately after completing ESOR application in Lapangan X, the result was contradictive with this research hypothesis. Exposure of direct current electrical supply did not increased heavy crude oil production. On a contrary, parameter of salinity and API gravity as produced heavy crude oil quality, were improving significantly.


2020 ◽  
Vol 30 ◽  
pp. 1-8
Author(s):  
Edgardo J. Suarez-Dominguez ◽  
Josue Fco. Perez-Sanchez ◽  
Arturo Palacio-Perez ◽  
Elena Izquierdo-Kulich ◽  
Susana Gonzalez-Santana

Production of heavy and extra-heavy crude oils generally entails high costs, especially in the winter season, due to heat losses. This work studies the effect of a flow enhancer (a chemical formulation based on biodiesel and oxidized biodiesel of soy oil) on the viscosity of heavy crude oil from different wells in Northern Mexico. The observed results indicate a non-linear decreasing behavior of viscosity concerning temperature and volume fraction of the viscosity reducer. It is also presented a theoretical model that predicts the flow increase that can be achieved using the enhancer in systems in which crude oil temperature is higher than the temperature of the environment. Results showed adequate correspondence between experimental and predicted data. It was found that the enhancer increases the volume of crude oil that can be processed without varying pressure gradient.


Author(s):  
Antonio C. Bannwart ◽  
Oscar M. H. Rodriguez ◽  
Carlos H. M. de Carvalho ◽  
Isabela S. Wang ◽  
Rosa M. O. Vara

Abstract This paper is aimed to an experimental study on the flow patterns formed by heavy crude oil (488 mPa.s, 925.5 kg/m3 at 20 °C) and water inside vertical and horizontal 1 in. pipes. The interfacial tension was 29 dynes/cm. Effort is concentrated into flow pattern characterization, which was visually defined. The similarities with gas-liquid flow patterns are explored and the results are expressed in flow maps of the superficial velocities. In contrast with other studies, the annular flow pattern (‘core annular flow’) was observed in both horizontal and vertical test sections. In fact this flow pattern typically occurs in heavy oil-water flows at low water input fractions. Because of the practical importance of core flow in providing an effective means for heavy oil production and transportation, this paper discusses two criteria that favor its occurrence in pipes.


2004 ◽  
Vol 126 (3) ◽  
pp. 184-189 ◽  
Author(s):  
Antonio C. Bannwart ◽  
Oscar M. H. Rodriguez ◽  
Carlos H. M. de Carvalho ◽  
Isabela S. Wang ◽  
Rosa M. O. Vara

This paper is aimed to an experimental study on the flow patterns formed by heavy crude oil (initial viscosity and density 488 mPa s, 925.5kg/m3 at 20°C) and water inside vertical and horizontal 2.84-cm-i.d. pipes. The oil-water interfacial tension was 29 dyn/cm. Effort is concentrated into flow pattern characterization, which was visually defined. The similarities with gas-liquid flow patterns are explored and the results are expressed in flow maps. In contrast with other studies, the annular flow pattern (“core annular flow”) was observed in both horizontal and vertical test sections. These flow pattern tends to occur in heavy oil-water flows at low water input fractions. Because of the practical importance of core flow in providing an effective means for heavy oil production and transportation, this paper discusses criteria that favor its occurrence in pipes.


Sign in / Sign up

Export Citation Format

Share Document