An Experimental Investigation of Oil-Water Flow Patterns in Horizontal Pipes

Author(s):  
Hai-Yuan Yao ◽  
Jing Gong

In this paper, an experimental research on the oil-water liquid-liquid two-phase flow patterns and their transitions in horizontal pipes are carried out. According to online oil-water flow structures and the analysis of pressure drop signals., different flow patterns are defined and distinguished. A new classification for oil-water flow patterns is proposed. The flow pattern maps are obtained from the experimental data, and the factors affecting the transition mechanism of different flow regimes are discussed. In addition, some semi-theoretical criteria for the transition between different flow patterns are proposed. Especially, an accurate model is developed to predict the critical conditions for phase inversion. Comparisons of the proposed criteria with other experimental data show reasonable agreements.

Author(s):  
D. Chisholm

Equations are developed for the flow of gas-liquid mixtures through nozzles under conditions of critical or ‘choking’ flow. The equations are compared with experimental data obtained during air-water flow through nozzles and pipes at almost atmospheric pressures. Comparison is also made with data on the sonic velocity in mixtures. Additional problems arising with vapour-liquid mixtures are also discussed.


2016 ◽  
Vol 115 ◽  
pp. 135-148 ◽  
Author(s):  
Hassan Pouraria ◽  
Jung Kwan Seo ◽  
Jeom Kee Paik

Author(s):  
S. Alireza Hojati ◽  
Pedram Hanafizadeh

The flow patterns in two phase and multi-phase flows is a significant factor which influences many other parameters such as drag force, drag coefficient and pressure drop in pipe lines. One of the major streams in the gas and oil industries is oil-water two phase flow. The main flow patterns in oil-water flows are bubbly, slug, dual continuous, stratified and annular. In the present work flow patterns in two phase oil-water flow were investigated in a 0.5in diameter pipe with length of 2m. 3D simulation was used for this pipe and six types of mesh grid were used to investigate mesh independency of the simulation. The proposed numerical analyses were performed by a CFD package which is based both on volume of fluid (VOF) and Eulerian-Eulerian methods. The results showed that some flow patterns can be simulated better with VOF method and some other maybe in Eulerian-Eulerian method, so these two methods were compared with together for all flow patterns. The flow patterns may be a function of many parameters in flow. One of the important parameter which may affect flow patterns in pipe line is pipe inclination angle; therefore flow patterns in the different pipe inclination angles were investigated in two phase oil-water flow. The range of inclinations has been varied between −45 to +45 degree about the horizon. In the presented simulation oil is mixed with water via a circular hole at center of the pipe, the ratio of oil surface to water surface at entrance is 2/3 so water phase was considered as the main phase. Flow patterns were investigated for every angle of pipe and numerical results were compared with available experimental data for verification. Also the flow patterns simulated by numerical approaches were compared with available flow regime maps in the previous literatures. Finally, effect of pipe inclination angle and flow patterns on the pressure loss were investigated comprehensively.


1998 ◽  
Vol 120 (1) ◽  
pp. 8-14 ◽  
Author(s):  
J. G. Flores ◽  
C. Sarica ◽  
T. X. Chen ◽  
J. P. Brill

Two-phase flow of oil and water is commonly observed in wellbores, and its behavior under a wide range of flow conditions and inclination angles constitutes a relevant unresolved issue for the petroleum industry. Among the most significant applications of oil-water flow in wellbores are production optimization, production string selection, production logging interpretation, down-hole metering, and artificial lift design and modeling. In this study, oil-water flow in vertical and inclined pipes has been investigated theoretically and experimentally. The data are acquired in a transparent test section (0.0508 m i.d., 15.3 m long) using a mineral oil and water (ρo/ρw = 0.85, μo/μw = 20.0 & σo−w = 33.5 dyne/cm at 32.22°C). The tests covered inclination angles of 90, 75, 60, and 45 deg from horizontal. The holdup and pressure drop behaviors are strongly affected by oil-water flow patterns and inclination angle. Oil-water flows have been grouped into two major categories based on the status of the continuous phase, including water-dominated and oil-dominated flow patterns. Water-dominated flow patterns generally showed significant slippage, but relatively low frictional pressure gradients. In contrast, oil-dominated flow patterns showed negligible slippage, but significantly large frictional pressure gradients. A new mechanistic model is proposed to predict the water holdup in vertical wellbores based on a drift-flux approach. The drift flux model was found to be adequate to calculate the holdup for high slippage flow patterns. New closure relationships for the two-phase friction factor for oil-dominated and water-dominated flow patterns are also proposed.


Author(s):  
Hermes Vazzoler Junior ◽  
Daiane Mieko Iceri ◽  
Juliana Cenzi ◽  
Carlos Keiichi Tanikawa da Silva ◽  
Charlie van der Geest ◽  
...  

1997 ◽  
Vol 12 (03) ◽  
pp. 165-172 ◽  
Author(s):  
J.L. Trallero ◽  
C. Sarica ◽  
J.P. Brill

2015 ◽  
Vol 127 ◽  
pp. 409-420 ◽  
Author(s):  
Ahmad Shamsul Izwan Ismail ◽  
Issham Ismail ◽  
Mansoor Zoveidavianpoor ◽  
Rahmat Mohsin ◽  
Ali Piroozian ◽  
...  

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Wei Wang ◽  
Jing Gong

In oil-water two-phase dispersed flow, phase inversion may occur when the continuous phase becomes dispersed. This phenomenon, which controls the nature of the phase in contact with the pipe, has a great importance on the corrosion and on the pressure drop, which dramatically affects the delivery ability and operational modality. It is therefore imperative for the phase inversion research to be taken into consideration. However, most of the knowledge on phase inversion is for light mineral oil with low viscosity, few research focuses on high viscosity oil-water phase inversion. Arirachakaran et al. (1989, “An Analysis of Oil/Water Flow Phenomena in Horizontal Pipes,” SPE Professional Product Operating Symposium, Oklahoma, SPE Paper No. 18836) found that critical water fraction when inversion occurred was dramatically reduced with the increment of oil viscosity, and the existing phase inversion models are invalidated. In this paper, an experimental study has been made of high viscosity mineral oil-water flow through a horizontal pipe loop. Results indicate that phase inversion for oil phase with high viscosity occurs much earlier than low viscosity oil, and phase inversion tends to be delayed, with the increment in experimental temperature. The influence of mixture velocities on the inversion process could be neglected in the range of mixture velocities that we studied. As well, inversion point obtain by our experiment are best predicted by the correlation of Arirachakaran et al. (1989, “An Analysis of Oil/Water Flow Phenomena in Horizontal Pipes,” SPE Professional Product Operating Symposium, Oklahoma, SPE Paper No. 18836). Models of Decarre and Fabre (1997, “Phase Inversion Prediction Study,” Rev. Inst. Fr. Pet., 52, pp. 415–424) and Braunerand Ullmann (2002, “Modeling of Phase Inversion Phenomenon in Two-Phase Pipe Flows,” Int. J. Multiph. Flow, 28, pp. 1177–1204), based on minimization of system total energy, seem to be invalidated for high viscosity oil.


Sign in / Sign up

Export Citation Format

Share Document